LA-UR-99-2981

Approved for public release;
distribution is unlimited.

Title:
e Composition Environment for Simulation Development

Author(s): | Clay P. Booker and Greg Lacey

Submitted to:

http://lib-www.lanl.gov/la-pubs/00460093.pdf

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of

Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-

free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the

viewpoint of a publication or guarantee its technical correctness.
FORM 836 (10/96)

Composition Environment for Simulation Development

An LDRD Project Implemented by
Clay P. Booker, TSA-3 and Greg Lacey, TSA-3

ABSTRACT

A prototype Composition Environment is implemented and future modifications required to make
the prototype a practical tool are explored. A distributed Repository to warehouse reussble
components is demonstrated, and a simple run time adapter that can attach itself to a composed
simulation and execute it with little user manipulation is tested. The Composition Environment,
Repository, and Run Time Adapter together allow simulations and components to be completely
portable; a simulation can be composed, configured, and run anywhere. Thus, a component or
simulation can be loaded on one or more notebook computers and taken to off-site locations for
demonstrations or customer applications.

INTRODUCTION

The Laboratory, like many other organizations, is often faced with the Situation of having to
quickly respond to new or emerging problems with an analysis or technology that is based on the
use of modeling and smulation techniques. This often requires the development of a new
simulation design or the modification of an old, outdated simulation. Typically, one sets about
designing a new simulation from the ground up, perhaps borrowing or rewriting code from other,
older simulations to meet some or most of the modeling needs. Almost always, we depend on
domain experts to reapply their expertise again and again to rewrite simulation models, often from
scratch.

In addressing the above situation, we have set out to develop an ever growing Repository of
reusable components embodying developed models. Further, we are developing an Environment
in which simulations or composite components can be composed using those already built, tested,
and trusted components. With these two tools, it will be possible to respond to an urgent demand
for a new smulation or provide answers based on a smulation in a more timely fashion with far
greater confidence than we have ever before experienced. Experts would no longer be called upon
to spend a great deal of time reworking and recoding models they have built and rebuilt time and
again; instead, they could concentrate on configuring the appropriate, aready built modd for its
current application. The bulk of the expert’s time could be more productively spent on
understanding the problem at hand and examining alternate scenarios.

In the past, we have been hampered in communicating and interacting with our potential or actual
customers because we typically either had to invite them here for a demonstration of our
simulations, or we had to reduce a simulation to a series of screen shots on transparencies and talk
our way through the component that we have built or propose to build. It is of great valueto us and
our customers that we can load a simulation on a notebook and take that fully functional simulation
to the customer for demonstration. To redize that, we require a run time environment that is
completely portable.

The project and tools described here have been developed to provide a completely portable
environment in which components may be developed, warehoused, and combined to respond to
any demand.

DESIGN ELEMENT GOALS

Some fundamental design elements are required to form a Composition Environment. These
include a basis for components that endows them with the ability to arbitrate the construction
(composition) of a more complex component and guarantee that such a composed component is
properly built and that the constituent parts are compatible. A variety of visualy based design
elements that facilitate the composition of such components is required. These expected visua
design elements include a Workspace in which to compose components from other, perhaps more
primitive components, a Repository of extant components, Palettes where a Repository’ s available
components are displayed and from which a user may select, and Configuration Editors which
enable the user to customize components. A Repository must be easily accessible so that existing
components are available to the user — even to auser far removed from the Repository. Finally, a
Composition Environment is useless unless the smulation or components can be easily and
portably executed. Thus, Run Time Adapters are required that are able to intelligently access the
run time features of acomponent and execute it with little intervention by the user.

Congruous Components

Congruous Components are components constructed so that they can query each other during the
composition phase and, by various means, indicate whether or not they can work together in the
new component that is being composed. They actively participate in the composition process and
act to prevent the composition of an ill-formed, greater component. A greater component composed
from congruous components is also congruous.

For example, suppose the user wishes to construct a new component to represent a satellite from
an existing set of components residing in a repository. For a smple satdlite representation, the
constituent components are a Sensor component which is the primary, desired function of the
satellite, a Comm component which communicates with a ground station, a Motive component
which caculates the motion and thus the time dependent position of the satellite, and a C2
component which integrates data from the other three components and sends appropriate signals to
the ground station via the Comm component.

Satellite

Sensor

Motive

Comm

Figure 1. Simple Satellite constructed from basic components

The set of Motive components from which the user might choose for the new satdlite is vast but
only avery few, those dealing with orbital mechanics, are suitable for any satellite component, and

the selection of the particular satellite type (for example, Geosynchronous) might further restrict the
selection. If the user were to sdect an internal combustion engine for the Motive component, the
container component which is congruous should reect it. Similarly, a tin-can-and-string Comm
component would be rejected for inclusion. Instead of the user having to be the expert in building
the satellite, the constituent components themselves should arbitrate the construction of the greater
component so that no inappropriate selections can be made, and when al the components are put
together, the resulting satellite is guaranteed to be functional even it is perhaps not the best
representation of the desired satellite.

In this paradigm, the expertise resides in the components rather than necessarily in the user. Basic
components are presumably designed and constructed by domain experts who also design into the
components congruous elements so that a collection of congruous components will work together
properly. This should be particularly true of Atoms which are components which cannot be broken
down into constituent components.

Workspace and Palettes
In order to compose components, a visual manipulation environment is required. The user should

have Paettes from which to sdlect from existing components and a Workspace in which to
assemble them. Such an environment isimaginatively depicted below in Figure 2.

Delilah Repositoryf
Actors

iy Local Repositoryf
— WorkSpace — Simulation Actors
| |FileEdit Options

o l’ FL DE Forward Looking

Discrete Events Engine
Typel

Figure 2. Workspace and Palettes.

Along with the these elements, a variety of support elements such as a clipboard and preferences
selection dialogs are needed.

Repository
For the proposed Composition Environment to be of use to anyone, it must include a repository

which stores aready constructed components so that the user may select from a variety of
components to build his new component. Further, this Repository should be distributed so that

centers of domain expertise may be accessed for trusted components with which the user may
construct a new component and have some confidence in its viability. Such a Repository is
represented below in Figure 3. Note the provision for a user to publish his own loca Repository
so that other users may accessiit.

. Repository

T
b sl

Figure 3. Distributed Repository Example.
Configuration Editors

While acomponent may be built to accurately represent a physical object or collection of physica
objects, it still must be configured for the specific application. For example, suppose the user has
selected a proper, orbital-based Motive component for his satellite; that Motive component must be
configured with the proper orbital elements before the new satellite component can be used.

Orbital Elements:
a, semi-major axis D km
€, eccentricity D
i, inclination D degrees
Q, long. of ascending node D degrees
w, argument of periapsis D degrees

T, time of periapsis passage D
(Cancel) (OK)

Figure 4. Sample Configuration Editor.

Run time

In order the execute the simulation (Note that a simulation isjust a component from the stand point
of the Composition Environment.), a run time adapter (RTA) is needed. The RTA must use the
congruous component features to negotiate with the attached component in order to extract the
appropriate interface to initiate and control the run. Accordingly, the user is only expected to
provide areference to the component he desires to run and the RTA will work with the component
to set up the run and execute. For distributed ssimulations, the RTA works with the component to
distribute the sub components on the platforms specified in the Composition Environment with the
Configuration Editors; the user will not be called upon to manually distribute the components of the
simulation.

BASIC IMPLEMENTATION

The basic implementation of the goals set forth in the previous sections requires the selection of a
language; as explained below, the Composition Environment and the congruous component are
implemented in Java. Further, the congruous component architecture must be designed and
implemented along the lines established above and be compatible with a distributed Repository.

Java

In order to store and manipulate objects, an Object-Oriented language must be used. There are a
variety of usable Object-Oriented languages and until recently C++ was apparently among the most
popular of those for simulation design and implementation; SmallTak has been used in some
applications, but it is demongtratively slow and has falled to redize its cross-platform promise. In
the last few years, Java has emerged as a language eminently suitable for simulation
implementation and has gained phenomena acceptance across the programming community — so
much so that it is squeezing out support for other, older languages such as Small Talk.

Java has many strengths and very few weaknesses that make it ideal for implementing a simulation:

» Javaistruly a cross-platform language with even primitive data types completely specified
across platforms [1]. Components designed and implemented on one platform are
completely portable and instantly usable on acompletely different platform. This can greatly
facilitate the use of verified and/or validated models because once a component is verified
and/or validated, it is usable without any change whatsoever on any platform.

» Persistence, the ability to write an instantiated object as a sequence of bytes to an output
stream, is an aspect of the Java language; this greatly expedites the task of storing a
component in a Repository and extracting it again from that Repository. As a result, an
object may be written to an output stream which in turn may be connected to a loca file, a
networked Repository Server, or a networked Data Base Manager. Such a persistent object
isgenerally called serialized which indicates that it is suitable for transmission over an 1/O
Stream. To implement the same functionality in C++ isamajor task and can severely impact
the basic design of the component. See Reference [2].

» Java has built-in and complete support for network communication so that implementation
of the distributed Repository is vastly eased. Further, the implementation of a distributed
simulation over a heterogeneous mix of computers over a network is notably simplified and
enhanced; our tests of message passing between machines on a network shows that Java
implementations exhibit speeds comparable to that of previous SAMSON tests which was
implemented in optimized C code [3]. See References[4, 5, 6, and 7] for more information
on Java's network facilities.

» Speed on many platforms with a Just-In-Time Compiler (JIT) is comparable to C++. In
future releases, Sun expects speeds to approach that of C with HotSpot technology along
with other improvementsin the Virtual Machine.

» Java has standardized the linkage to native code (for example: C, C++ libraries) so that the
incorporation of any legacy code is facilitated and is largely the same on any platform. See
Reference [8].

» Threading is part of the Java language. As Java Virtuad Machines mature and make better
use of native Threads, Java can make effective use of multiple CPU machines no matter
what the platform. See References[9 and 10].

» Java incorporates a facility called reflection which alows an object instance to be
scrutinized at run time. With reflection virtually al aspects of an instance’s implementation
such as class hierarchy, methods, and field variables can be interactively discovered;
methods may even be invoked without casting the object to the exact classiit represents.

» The Javalanguage supports the use of a special comment block, beginning with “/**” and
ending with “*/”, to facilitate embedded documentation of the code; this facility is called
javadoc. Within such acomment block special javadoc tags are recognized to mark features
of the code such as method arguments, method return value, and the like. When commented
code is processed by javadoc, an HTML document is produced which provides good
documentation of the code. The use of javadoc tags in a code is illustrated in the code
listings included in the appendices; the Composition Environment is fully commented using
javadoc tags.

 The Zip compressed archive has been standardized as pat of the Java language
specification. As a result, Java has al the facilities to create, read, and manipulate Zip
archives. This facility is useful when dealing with a large number of objects which belong
together or with large objects that must be transferred over a network.

Given dl of these advantages and implementation of Java on a considerable number of
platforms ranging from Macintosh, to Windows, to most Unix platforms, the Composition
Environment isimplemented entirely in pure Java.

An upcoming addition to the Java standard (1.2) is the Java Foundation Classes generally known
as Swing. It provides a new, better, lightweight set of graphical components that are more
independent of the platform on which the application runs. Swing aso incorporates pluggable
look-and-feel so that it possible to define a look-and-fedl unique to the application that is fairly
faithfully represented across platforms. Because this the intent of this study is to stay on the
forefront, Swing is incorporated into the implementation early and is used exclusively for the
visual representation. See References[11, 12, and13] for more information on Swing.

JavaBeans

Another important innovation introduced by Java is the JavaBean specification and Sun’s
BeanBox. The JavaBean is a reusable component architecture and the BeanBox is a prototype
visual development environment that allows the user to combine JavaBeans to create a new, more
complex Bean.

The JavaBean specification introduces many concepts that vital to the practica use of reusable

componentsin a Composition Environment. These include:

» The JavaBean which is a specification for a reusable component.

» A specification for methods that access the attributes of a Bean.

* Theuse of Jars, a speciaized Zip archive, to store a component. Primitive components are
available from the Repository in Jars and an aggregate component is stored in a Jar.

The BeanBox exhibits many of the features essential for the Composition Environment such as:

A Workspace in which to combine components and Pdettes from with to choose
components from a very primitive Repository.

» The Custom Editor facility to configure a component.

* A custom class loader to load objects unknown to the environment during run time, and use
them as if they were part of the environment from the beginning. With a class loader, an
application need know nothing about a candidate component; it may instantiate that
component, and discover its attributes as needed.

Unfortunately, the BeanBox was primarily designed for the aggregation of visual components
rather than the composition of components that may be combined to create a smulation or an
application; in particular, it lacks strong support for inheritance. As aresult, it lacks a variety of
key elements thus making it unsuitable for composing simulations. The BeanBox's notable
missing elements constitute many of the design elements described in this paper.

The JavaBean and the BeanBox are described in a variety of books; see References [14, 15, 16,
and 17] for asmall sample.

Congruous Components

The Congruous Component specification isa major, daunting design task. The methodology must
be flexible enough to accommodate any desirable simulation design, but smple enough that
designers can and will actualy make use of it. With that in mind, the design implemented here
consists of just two basic elements:
» A container class that may contain other containers and a single instance of a special
class cdled Personality. This container class is cdled GenericContainer; see
Appendix A for thelisting of GenericContainer.java.
» A Personality interface that defines the behavior and oversees the composition of a
container once it becomes part of that container. See Appendix B for a listing of
Personality.java.

The combination of a GenericContainer with a single Personality constitutes a component in the
Composition Environment described in this paper.

An empty GenericContainer has no function or usable attributes until it has been given a
Personality. Asillustrated in Figure 5, the fist step in creating a component is to add a Persondity
to a GenericContainer. Once a GenericContainer owns a Personality, it becomes a component
albet a undoubtedly incomplete one. However, with its Personality, the new component can
ingpect other components that are candidates for inclusion to define its functionality and attributes.
The GenericContainer subjects all such candidate components to the scrutiny of its Personality.

GenericContainer

/

GenericContainer

* |nstantiatea
GenericContainer

* Attempt to
add a Personality

SIUSAT JO aousnbeg

« Personality accepted
* Use new component

Figure 5. Transformation of a GenericContainer into a Component
by the addition of a Personality.

If a GenericContainer has no Personality, it will rgect dl attempts to add other components to its

inventory asillustrated in Figure 6.

¥

GenericContainer

GenericContainer

« Attempt to
add a Component
to a GenericContainer

SJUSAT JO 3ouanbag

»Y Component rejected
because GenericContainer
has no Per sonality

Figure 6. Doomed attempt to add a Component to a GenericContainer.

However, when a GenericContainer has a Personality, it is possible to add other components to the
GenericContainer’ sinventory asillustrated in Figure 7.

y
§
- « Attempt to
K el 8 add aY Component
o to an X Comonent
—h
Tl
<
X Personalit %
¥ Parsoraliy «Y Component
S accepted and integrated
into X Component

Figure 7. Adding a Subordinate Component to a Component.

The process of adding a component to the GenericContainer can be a complex one. The
GenericContainer does not accept the new component until it has been scrutinized by its
Persondity. The Personality may subject the candidate component to a variety of tests to see if the
candidate is admissible for inclusion in the Personality’s component; generaly, it initiates this
inquiry by extracting the candidate's Personality. It may then use reflection or it may subject the
candidate component’s Personality to a variety of queries in order to determine the candidate's
suitability. The Personality may also maintain arecord of past components added to its component
and adapt itself; accordingly its criteria for admisson may narrow and sharpen as more
components are added to its component. A particular instance of a Persondlity can become quite
sophisticated.

Once a candidate component is deemed suitable for inclusion in the GenericContainer, it is the
responsibility of the Personality to introduce it to other, already accepted components comprising
the Personality’ s component. The Personality may also choose to delegate some of the introduction
tasks to other components. In the end, all the components comprising the Personality’s component
are completely connected, and upon completion of the Personality’s component, comprise a fully
functional component that perhaps may be executed on its own or may be included in another,
greater component.

With this framework, complex components may be composed from a collection of smple
components; note that in this context, a simulation or an application is just acomponent. In order to
begin this process, there must exist a collection of components which cannot be broken down into
a collection of components, these are caled Atoms. Atoms are generally smple models that
perform a single task. Both their Personality and Algorithm embody the domain expert’s expertise.
The Persondity of an Atom declares the atomic nature of its component through its

separ abl e() method which returns false for an Atom. In a more complex component,
congtructed from other components, the domain expert's expertise is mainly embodied in the
design of the complex component’s Personality which will admit only certain other components
meeting the expert’ s criteria

An example of how a congruous component set might be designed and implemented, drawn from
an existing smulation project, is given in Appendices D-F. The relationship between the classes
and interfaces for the example NIC2 atom is shown in Figure 8:

| GenericContainer | | Personality |

| ComponentAfoni |

Figure 8. NIC2 makeup.

Here, ComponentAtom is provided as the basis for dl atoms in this simulation as it combines
GenericContainer and Personality and implements some of the basic Personality functions proper
for an atom. The DAPPC2 classes provide a basis for any C2 component in the smulation; it
implements the DAPPC2Personality and extends ComponentAtom providing some implementation
of methods beyond ComponentAtom and germane to C2 functions. Finaly, the NIC2 classes
implement the functionality required for the NIPlayer’s C2. It should be noted that DAPPC2Impl
implements RunTimeCommands making the C2 the point of command for executing a Player in the
simulation.

The NIPlayerPersonality classes (Appendix F.) show how the composed, congruous component,
NIPlayer, is implemented. The NIPlayerPersonality admits only certan components to the
composed NIPlayer. It queries any candidate component by extracting its Personality and
examining it via Reflection. If the candidate component’'s Personality meets the
NIPlayerPersonality’s smple criteria, it is admitted to help comprise the NIPlayer; if not, it is
rejected. An interesting feature of the NIPlayerPersonality is it relationship to the NIC2 described
above. If the NIC2 is added before other components, the NIPlayerPersonallity subjects dl
subsequent candidate components to scrutiny by the NIC2 before that component may be added; if
the NIC2 rgects a candidate component, the NIPlayerPersonality then reects it as well. If the
NIC2 isadded after any or dl other components of the NIPlayer, the NIPlayerPersonality causes
the NIC2 to evauate the dready resident components. If the resident components dl meet the
NIC2' s approval, then the NIC2 is added as a resident component; if the NIC2 regjects any of the
resident components, then the NIC2 isrejected by the NIPlayerPersonality.

—10 -

Jars

A Jar is simply a Zip Archive that has certain optional, but anticipated entries specified by the
Java standard. It preserves directory structure and may be compressed so that a Jar can be
efficiently transmitted over a network. The anticipated Jar entries are:

* The META-INF directory in which information about the other inhabitants of the Jar is
stored. The BeanBox and similar environments expect this information to reside in the text
file, MANIFEST.MF under this directory.

* A number of serialized objects which may or may not be JavaBeans. Each such object’s file
generally ends with the suffix, “.ser”.

* A number of class files which may or may not be JavaBeans. These adways carry the
“.class’ suffix.

» Any auxiliary files, such asimagefiles, that may be required by the Bean.

The MANIFEST.MF may have the following information about other inhabitants:

» Thefully-qualified name of thefile.

* Whether or not the entry is a JavaBean; if it is, it is an object to be instantiated by the
BeanBox or other such environment.

» Thealgorithm(s) used to digest the file.

» Thedigests generated by the specified algorithms

Anentry may include one or as many as dl the above information. A sample MANIFEST.MF is
shown below in Listing 1.

Mani f est - Ver si on: 1.0

Nane: | anl/tsa3/sinulation/actor/dapp/ conponent/ N C2I npl . ser
Java-Bean: True

Nare: | anl/tsa3/sinul ation/act or/ dapp/ conponent/N C2. cl ass
Nare: | anl /tsa3/sinul ation/ act or/ dapp/ conponent/ N C2I npl . cl ass

Nane: |anl/tsa3/simlation/actor/dapp/ conponent/N QPersonality.cl ass

Listing 1. An example MANIFEST.MF

A MANIFEST.MF entry may contain digital signature information so that some level of confidence
in the validity of the object may be associated with the entry; this could be important for verification
and validation concerns.

Unfortunately, the Manifest file is inadequate for use in a Composition Environment as complex
and flexible as that considered here. Specifically, the Manifest file keeps no inheritance information
so that a particular Jar must contain a complete set of classes to alow its bean to be instantiated.
The Composition Environment described here strongly encourages the use of inheritance and adds
to the META-INF portion of the Jar to carry inheritance information. It was decided that it would
be imprudent to alter the MANIFEST.MF file to accommodate inheritance information because the
form of the MANIFEST.MF file is still evolving and is in the hands of others. Instead a new
directory is added under the META-INF directory, COMPOSITION. Under this directory a variety
of filesmay be provided to furnish information critical to composition. At the time of this writing,
only one file is expected by the Composition Environment, REQUIRED JARS.MF. This file

—-11 -

specifies, in order, the Jars that must be loaded before the current Jar is loaded. The Composition
Environment then obtains the specified Jars from the Repository and examines ther
REQUIRED_JARS.MF. Finally, it loads the required Jars in the proper order. An example that
corresponds to the MANIFEST.MF file in Listing 1 above is shown below in Listing 2; note the
URL format in referencing required jars:

required-jar:
required-jar:
required-jar:
required-jar:

file://local host/Repository/Local/.Jars/Si ml ation/ DAPP/ DAPPI nfrastructure.jar
file://local host/Repository/Local/.Jars/|nfrastructure/ Conponent/BOOTPManager . j ar
file://local host/Repository/Local/.Jars/Infrastructure/ Conponent/EtherliteMnager.jar
file://local host/Repository/Local/.Jars/ Part/DAPP/ Sensor Parser. jar

Listing 2. REQUIRED_JARS.MF

Figure 9, below, shows how Jars may set up an inheritance hierarchy using
REQUIRED_JARS.MF. For this example, the Composition Environment would load the Jars in

the order:

1). J6.jar, 2).J4.jar, 3).J7.jar, 4). J5jar, 5).J2.jar, 6).J3.jar, 7).J1ljar .

META-INF/ICOMPOSITION
REQUIRED_JARSMF:

null

REQUIRED_JARSMF:
required-jar: file://...137 ja

META-INF/COMPOSITION,
REQUIRED_JARSMF:
required-jar: file://.../d6.jar

J
META-INF/COMPOSITION/
REQUIRED_JARSMF:
required-jar: file://.../1d4.jar

META-INF/COMPOSITION
REQUIRED_JARSMF:
required-jar: file://.../134.jar

Depends on

META-INF/COMPOSITION/
META-INF/COMPOSITION/
REQUIRED_JARSMF: REOUIIRED PRSI
required-jar'_file'// /J5]ar requ!red-J_ar: flle///Jz]ar
e required-jar: file://.../d3jar

Figure 9. Example inheritance hierarchy of Jars

—12 —

Accordingly, a Composition Environment Jar resembles that depicted in Figure 10, below. Such a
Jar maintains the META-INF/MANIFEST.MF as the Java Jar standard. It adds the META-
INF/COMPOSITION directory with its mandatory file REQUIRED JARS.MF as specified above.
In the future, more information may be added to this directory; see the section Future Work,
below. The Jar may contain a serialized object which is the only form of Bean recognized by the
Composition Environment; thisis denoted by the bean icon next to it in Figure 10. If aJar does not
contain a bean, then it undoubtedly is used for inheritance by a Jar that does include a Bean.
Virtualy all Composition Environment Jars will contain at least one class file corresponding to the
Bean.

Jar
META-INF
MANIFEST.MF
COMPOSITION

REQUIRED_JARSMF

package-name. X.ser i®
package-name. X.class

package-name. Y.class

- /

Figure 10. Composition Environment Jar structure.

| cons

Since the Composition Environment is fundamentally a visual setting, it is desirable to associate a
icon with a given component that somehow represents the function or attributes of that component.
Thereis provision in the JavaBeans standard for such an icon; the Beanl nf o object has a method
to fetch the Icon associated with the Bean. Unfortunately, that method returns an Image which is
not a platform independent object. Further, it seems improper to force a developer to invent an icon
for his component.

The Composition Environment provides platform independent icons using the Swing | magel con
as part of the repository. The developer need only provide a String specifying the desired icon to
represent the component, and the Composition Environment is responsible for searching the
Repository for the required | magel con to display (See the Personaity’s method,
get | conNane() in Appendix B.). For example, the NIC2 component specifiesits icon with the
String: “/ Act or/ Part/ DAPP/ C2/ Nl C2”; the Composition Environment searches the
Repository under the Icon directory, / | cons/ Act or / DAPP/ C2, for the file, “NI C2. ser”,
whichisthel magel con containing theicon.

In practice this has been a clean way of associating an icon with a component, and it avoids any

requirement that a component developer provide an icon as part of the component’s code. In the
case of adeveloper that refuses to address the icon question, others may make the decision externa

— 13-

to the code and simply provide the proper icon in the Repository. It is anticipated that this feature
may alleviate the incorporation of legacy code in the Repository in the future.

Tags

In order to efficiently represent the contents of a Repository, it was deemed undesirable to transfer
al the Jars of a particular category to the client Composition Environment every time a Palette for
that category is summoned. Moreover, a Palette represents the component simply with an icon and
description. Accordingly, a compact representation for each of the residents of the Repository is
required that is small enough so that network transmission times for alarge number of them would
not be onerous and that contains succinct information reflecting the attributes of the resident so that
intelligent sel ections can be made from the Palette. To fill this need, the Tag file was devised.

A Tag hasthe following entries asillustrated in Figure 11.:

 icon: Thisisaportable icon that visually represents the component associated with the Tag.
It is implemented as an Image Icon (See the Swing References.) because that class
implements the only portable form of image in the Java standard. The icon conforms to a
20 by 20 pixel square.

e icon name: A String that references the icon in a machine independent way as described
above.

* name: The name of the component.

* URL: A URL that points to the Jar containing the component. When using this field, the

Composition Environment first assumes that the Jar is to be found locally and thus ignores

the host part of the URL; it then searches the Locd or WIP sections based on the path

specified in the URL. If the specified Jar is not to be found in the Local Repository, the

Composition Environment uses that path to search any user-specified preferred Repositories

available on the net. Finally, if the specified Jar is not to be found there, the Composition

Environment uses the host and port specification of the URL to retrieve the Jar from that

Server, if active. In the future, this search sequence may be modifiable by the user.

Author name: The name of the author(s) of the component referenced by the Tag.

Version: A version String associated with the component.

Short Description: A short description of the component.

Long Description: A longer description of the component.

A Tagis redized as a Zip compressed archive so that the above heterogeneous, small objects can
be kept together as a set in asingle, compressed archive.

&

L
con:
IconName: /Actor/DAPP/NIPlayer
name: NIPlayer
URL.: file://localhost/Repository/L ocal/.Jar Actor/DAPP/NI Player.jar
Short Description: NI Player
Author: C. P. Booker
Version: 1.0 1997 October
| ong Description: Composed NI Player

Figure 11. Tag Entries.

— 14—

When the Composition Environment uses a Tag to create a Palette, it checks the loca Repository
for the existence of the Tag's icon according to the icon name specification. If the Tag'sicon is
not in the local Repository, it iswritten to the local Repository for current and future use.

At the moment the Composition Environment cannot create or edit Tags; there are externa utilities
to perform these functions.

Repository

The Repository design makes use of both Jars and Tags as described above. As illustrated in
Figure 12 below, there are three main storage directories in the Repository. The L ocal directory is
where dl loca Tags and Jars are stored; these are only visible to the Composition Environment
running locally. Under Locdl, there are a variety of directories such as Actor, Smulation, and
Component along with possibly others which roughly segregate the different functions of
components that may be found under them. Tags are used in these directories to represent the
available components. The .Jars directory may have a tree structure mirroring that of the rest of
Locd, and al the locally available Jars are stored here.

The tree structure under Export and WIP mirrors that of Loca. The Export directory contains al
the Tags that would be visible to connecting clients should the user choose to publish his
Repository. These Tags might point to Jars under Export/.Jars or they may point to Jars under the
Locdl directory depending on the owner’s preference. For a dedicated Repository that has no
anticipated local user , for example, A Server Repository, the Export directory is the only one that
would be populated. The WIP directory is the Work in Progress directory and is available for
saving or retrieving work directly from a Composition Environment’s Workspace; it is only
accessible from the locally executing Composition Environment.

" Repository h

L ocal ExEort P

Actor —

Simulation

Component
Component

Simulation

- /

Figure 12. Structure of the Repository.
Note: Icon storage facility is not shown.

- 15—

The Repository Server is implemented in Java using Remote Method Invocation for network
communication. Currently this gives the Server adegree of security without employing passwords
or encryption techniques. Future implementations of the Repository should incorporate more
Security measures.

IMPLEMENTATION OF VISUAL DESIGN ELEMENTS

The visua design elements of the implemented Composition Environment are shown and described
here. These elements are designed to meet the goals brought out in a previous section. The Java
Foundation Classes are used exclusively to implement these features; as aresult, the ‘look and fed’
is similar on any platform. Following this section are two examples of how to use these design
elements in the Composition Environment. The first example shows in detail how they are used to
access the underlying structures to compose a new component from components residing in the
Repository.

Main Menu

The Man Menu gives the user access to the
Composition Environment’s primary tools. The first
button, “New Workspace’, alows the user to
summon a new Workspace in which to compose a
new component; there is no restriction on the number
of Workspaces that may be open. The second button, New Palette
“New Palette”, allows the user to put up a Paette)
displaying the contents of a selected Repository; Empty Container
when selected, the user is queried to specify the
desired Repository. The “Empty Container” button Show ClipBoard
places an empty GenericContainer in the Clipboard.
The user may then paste that Empty Container into

any empty Workspace. Should the Clipboard become Preferences
invisible, the “Show Clipboard” button will make it Quit
visible again. The “Preferences’ button summons the u
Preferences Dialog. Finaly, the Quit button, exits the
Composition Environment. Figure 13. Main Menu

2j=

&1

Composition

New WorkSpace

[

Preferences Dialog

O 5o Preforemoc s B

The Preferences Dialog allows the user to :

define a set of preferences that SUNVIVE lfoaras rest gorems R S
between sessions; the preferences are stored uatel kg e
inafile named, “Preferences’. The primary e Pt
item of interest in the current incarnation of F R T—
this dialog, is the “Default Repositories’; -

these are the Repositories to which the = e e e
Composition Environment turns when it -
cannot find requested or required items
locally. Further, when the user indicates a Moot || Eumasd -
desire to access a Remote Repository, this
is the default list that is pr%ented The Figure 14. Pr efer ences M enu.
column of buttons on the right are available

to maintain the file system in the local Repository.

— 16 —

Clipboard

The Clipboard issimilar to a clipboard in any Operating System. A component’'s Tag that has
been selected from a Palette is stored here until the component is pasted into another component or
into a Workspace. The Clipboard is cleared after a component is used. Alternately, the user may
clear the Clipboard at any time by using the“Clear” button athe bottom of the window.

An empty Clipboard is depicted here in Figure 15. When a component shows in the Clipboard,

information from its Tag is displayed:

e The name of the Component is
displayed across the top rather than
“Empty” shown in the figure. Empty

e The scralling text area displays the
long description of the component. Mone

e The Author field displays the name
of the Author.

e The Veson fidd displays the 4 b

version string associated with the
Component_ .ﬁ.l.lﬂllll'. nong

Yersion: none

| =———1rlinhnard=——U1H

[»

Jl

Note that when an object is sdected from a
Pdette and appears in the Clipboard, the
component has not yet been extracted from its
Jar; in fact the Jar may not have been retrieved . .

from the Repository. The Clipboard just Figure 15. Clipboard
displaysinformation from the Tag that originated in the Palette.

Work Space

A Workspace is ssimply avisual representation of acomposition area in which components may be
composed. An empty Workspace will accept a component or empty container that is dropped on
it, but it will not accept a Personality because a Personality is not a GenericContainer. Figure 16.
shows three different aspects of a Workspace. Thefirst is an empty Workspace ready to accept an
empty container or a component. A component may be added to this Workspace via a Pdette or
from the Work in Progress (WIP) section of the Local Repository using the Workspace's Jar
menu. The next Workspace, to the right, holds an Empty Container placed there from the Man
Menu; in this configuration, only components or a Personality may be added to the container from
a Palette. The last, bottom Workspace shown in Figure 16. depicts a Workspace that holds a
component; while incomplete, the component has a Personality and thus may accept the addition of
other components. Note that the component is marked as incomplete along the top of the
component’ s display.

It should be noted that the Workspace controls the display of al components shown in it.
Components have no facility to draw themselves in the Composition Environment; the drawing of
a component is completely handled by the Composition Environment. As a result, a component
developer need know nothing about Java's display classes to create a component. As the number
of owned components exceeds the size of the display, avertical scroll bar appears on the right hand
side of the Workspace' s primary component giving the user access to al owned components.

—17 —

I El

|l
I[

|

Figure 16. WorkSpaces.
The top, left WorkSpace is empty, the top, right contains an Empty GenericContainer. The
bottom contains a partially composed component.

— 18—

Navigating a Repository

Navigating a Repository is fairly easy within the Composition Environment. When the user

selects, “New Paette” from the main menu, the diaog in Figure 17. appears allowing the user to
select aLocal or aRemote Repository:

O a8

[

select a Repository I'-,frm

| [P) [
i| LuULul o

Figure 17. Selection of a Local or Remote Repository.

If the user chooses to access a Remote Repository, the dialog in Figure 18. appears with a default
selection list from the Preferences dialog and an editable field, “New Repository” which allows the
user to specify a Repository not displayed in the list. Note the Repository is specified by a machine
name followed by a port number (typically 5056) with *:’ for adelimiter.

=] Select Repostory =)
i il AEimote Beposibon:

i o s il oS 056
il &l & b el s 5056

Figure 18. Available Remote Repositories

A Local or Remote Repository is navigated with the dialog shown in Figure 19. In the Repository
Navigator, the name of the Repository is shown at the top. The middle, scrolling field, “Available
Categories’, lists the currently available categories which are actualy directories in the Repository.
Totheright of thisfield isacolumn of buttons allowing the user to move up and down within the
categories. The next scrolling field, “Current Category” shows the full name of the current
category. If the button at the bottom, “Use Current Category”, is enabled, there are Tags available

in the current category, and if this button is clicked, a Palette will be created from the Tags
comprising the current category.

—19 —

1

Fopmsiiory

uf]
m

Glarrimmtbn Flho [Sormmr
TANIYALTD LD Ropw

delilah lan) goy

Awnilable Cakegaries
srinr
Comp oa e

A
LUl

.:i'-

Figure 19. Repository Navigation.

Palette

A Palette depicts the components available in a selected
category from a particular Repository. A Paette has
the same general appearance whether it originates from
a Remote or Loca Repository. The top line in the
Palette is the name of the Repository from which it
originates. Below that, the scrolling field shows the
category from which the components are drawn; it has
a horizonta scroll bar because the category
specification can become quite long. Under that is a
series of buttons with icons. Each represents an
avallable component in that category. The icon and
name for each is taken from the corresponding
component’'s Tag in the Repository. Should the
number of components exceed a preset number, a
vertica scroll bar appears to the right of the bank of
component buttons alowing the user to scroll the list
of components; with this feature, the Palette cannot
become unmanageably tadl for the user’s screen.
Finally, the bottom button on the Pdette alows the
user to close the Palette. When a Pdlette is closed, the
Composition Environment examines dl remaining

1 = delilahJanl.gov./Reposi = F B

dehlahlanl.gov

ARepository/Export/Component

-
| —

BOOTFManager

E5' DirectMessaging

; EtherliteManager

dose

Figure 20. Example Component
Palette.

links to the corresponding Repository and severs the connection to that Repository when there are
no more Palettes or Browsers attached to it and when there are no more pending requests of that

Repository.

EXAMPLES

In this section, two examples are presented showing how to use the Composition Environment.
The first shows how to create a fairly smple component from atoms. The second, more
abbreviated example shows how to create a very smple smulation using the just created
component and another existing component. A following section shows how to attach a Run Time
Adapter to the just composed simulation and execute it. All examples are taken from a smulation
project which was being developed at the same time as the Composition Environment.

Construction of an Example Player

—20 -

For this example, the Composition Environment is used to construct a simple Player, the NIPlayer,
for aspecific smulation. The NIPlayer consists of five components and an NIPlayer Personality.

For this example, the desired Personality and components reside on a Remote Repository residing
on aUnix machine named Dedlilah.

1. In the beginning:
When the Composition Environment starts-up, the user is confronted with just the Man

Menu. Figure 21 shows the Composition Environment a short time after start-up; the user
has already clicked the “New Workspace” button and arranged the windows:

] Clipboard == | WorkSpace0 BB
Jar Manipulate Configure

O Compaosition ==

New WorkSpace
New Palette
Empty Container
Show ClipBoard

Qear - Preferences

Quit

4 [»

Figure 21. Ready to compose a Player.

At this point, the Workspace is ready to accept acomponent or an Empty Container to begin
the composition process. The user may load the Workspace with a partialy completed
component via the Workspace's Jar menu which accesses the Local Repository’s WIP
section or by using a Pdlette attached to the Loca or a Remote Repository. On the other
hand, the user may |oad the Workspace with an Empty Container from the Main Menu.

- 21—

2. Creating a Component from Scratch:

Figure 22 depicts the Composition Environment after the user has dropped an “Empty
Container” from the Main Menu on the Workspace.

= Clipboard mg| o workSpacel m=] 0
Jar Manipulate Configure

Composition B8

New WorkSpace
New Palette

Container

4 [»

Show ClipBoard
Qear - Pr‘efer.ences
Quit -

Figure 22. Instantiating an Empty GenericContainer in the Workspace.

Once the empty container is dropped on the Workspace it is instantiated. However, the
Empty Container itself and any component does not possess the facility to display itself in
the Composition Environment. Instead the Composition Environment itself wraps any given
component, and that Wrapper is displayed in the Workspace. Because Wrappers are used to
visualy display a component, the component developer need not be concerned with the
intricacies of how to display a component in the Composition Environment. The developer
simply provides the required methods, typicaly implemented in the Personality interface,
that provide general information on the component. The Composition Environment uses
those methods and Reflection to create an appropriate, displayable Wrapper for the
component.

— 22 —

3. Accessing the Repository:

Now that the Workspace contains an Empty Container, the user is ready to compose a
useful component from components and a Personality residing in a Repository. Clicking the
“New Pdette’ button in the Main Menu eventualy leads to the “Select Repository” diaog
from which the user may select a Remote Repository to access aready built components.
Thisisillustrated in Figure 23.

O Clipboard =] gm| WorkSpace0 mg O
Jar Manipulate Configure

Composition B8

New WorkSpace

] New Palette
'| D Empty Container
Show ClipBoard
arD Preferences
i@ Quit
ui %
E Select Repostory B
Select Remote Repository:
eridanus.lanl.gov:5056 -
delilah.lanl.gov:5056
1 Dl
| |
Select New Cancel
ESi

Figure 23. Selecting a remote Repository, delilah.lanl.gov .

The user’s favorite Repositories, identified in the Preferences section, are available in the
large scrolling pane. The user has the option of typing in a different Repository in the field
below that. In this example, the user selects, delilah.lanl.gov:5056.

4. Navigating the Repository:

Ddilah has an active Repository Server which connects to the client Composition
Environment; In a proper production environment, there might be many such machines with
Repository Servers running full-time. These machines might be in different parts of the
country or even theworld giving rise to atruly distributed Repository. When the server and
client establish a connection, the client displays a Repository Browser as shown in

— 23—

Figure 24. Now the user may select categories from within the Repository and summon
Palettes to display the components available in a given category.

] Clipboard HE|O workSpace0 B8 O Composition— B 5
Jar Manipulate Configure
New WorkSpace
New Palette
[l Empty Container
Show ClipBoard
Qear Preferences
] Repository =]
Actor el
Component
Op:
=/ cancel
a I»]
|/Repn51tnrg/£xunrl ||‘
[D]
O

Figure 24. Navigating the remote Repository.

. Displaying a category’s Palette:

Since the previousfigure, the user has navigated into the /Actor/Personality category of the
delilah.lanl.gov Repository. Once in this category, the Navigator’s “Use Current Category”
button is enabled; compare the appearance of this button in figures 24 and 25.

] Clipboard 2=] WorkSpace0 =] =}

] Composition @8
New WorkSpace
New Palette
Empty Container
Show ClipBoard

Jar Manipulate Configure

Preferences

Quit B

Repository
delilahJanl.gov
/Repository/Export/Actor/Person
[D
' NiPlayerPersonality
Qose %
Ope
~| cancer
4 | | |
|
/Repository/Expart/Actor/Hlfrsonality ||q
[Dl |
Use Current [tegory
|— ,,,,,,,,,,,,,,,, .‘r—

Figure 25. Creation of a Palette from the Current Category in the remote Repository.

—24—

Clicking on the “Use Current Category” button givesriseto a series of transactions between
the Repository Server and the Composition Environment client culminating in the creation of
the Palette shown at the right of Figure 25. This Pdette displays just 1 item, a Personality;
this NIPlayerPersonalilty is suitable for asimulation Player.

6. Giving the Empty Container a Personality:
As shown in Figure 26, the user selects the NIPlayerPersonality from the Palette and drops

it on the Empty Container in the Workspace. The dotted, black line indicates that once the
Personality is selected, it appears in the Clipboard.

O Clipboard = onkSnacel =1 NTa] Composition =— 18
! Jar Manipulate Configure

New WorkSpace
New Palette
Empty Container
Show ClipBoard

Preferences

An NI Player Personality

~-

1

Quit u

[= delilah.anl.gov:./Reposit = E1 5

delilahJanl.gov

; /Repository/Export/actor/Person
5 {etor /D APP ANIF ayer
;

| »

/ ;
........................
B e onality

dose r

4

/Repository,

Ll

Figure 26. Dropping a component selected from the Palette on the
empty GenericContainer.

Note that once the Workspace' s component has a Personality, the Wrapper representing it
changes color and more information appears. The component takes on the name of its
personality shown at the top. A second text line marks the component as incomplete. This
Is a dynamic feature; as the component is changed, its Personadlity is queried by the
Composition Environment with respect to completeness of the Component. Now that the
component being composed has a Personality, it is ready to consider other components as
candidatesfor inclusion init.

— 25—

7. Completing the component:

Figure 27 combines severa actions. The Repository Browser has been used a few times to
acquire Palettes for two more categories; they are shown on the right. Components have
been selected from these Palettes and dropped on the component in the Workspace; each
time, the candidate component has been subjected to scrutiny by the NIPlayerPersonality

beforeit isalowed to join with the component being composed. In each case the candidate

component has been accepted. As each component is added, the Personality is queried by
the Composition Environment as to completeness of the component; note that finally, the
second line in the Workspace shows “Complete” indicating that the component is ready to

use as judged by its Personality.

Clipboard HB| (O WorkSpacel

1)

=)=

Jar Manipulate Configure

A BOOTF Manager for Etherlite dew

= Compuosition 2=
New wWorkSpace
New Palette

q

[»

B rersonality: * onent:

NICZ
Ri £ dctor /DAPP MNIFlayer NICZ

sﬁ Component: @ Component:
FSensorParser EOOTFMana
sorParser EOOTFY

B component ~4 Component

DirectConneNanan ager EtherliteMan.
EtherTitelan.

1]

/Repository/Export/

[

Use Cy

Empty Container
Show ClipBoard

Preferences

Quit -

O =delilahJanl.gov:../Reposii = F1 5

!
O = delilah.lanl.gov:./Reposii = F1 B

Rer delilahJanl.gov

/Repository/Export/Component

4

[»

BOOTPManager

— DirecthMessaging

EtherliteManager

Jose

A
Sensorfarser

ose %

Figure 27. Dropping the rest of the required components on the

evolving new component, NIPlayer.

— 26 —

8. Saving the new component:

Finaly, as shown in Figure 28 the completed, composed component is saved via the
Workspace File menu to the WIP section of the Local Repository.

(] WorksSpacel HB| IO Composition 2=
! Manipulate Confi
ar_| Manipu Lo New WorkSpace

Open

Save New Palette
Empty Container

Show ClipBoard

Preferences

O Clipboard
(A

A BOOTP Manager for Etherlite dey

Kl D

Quit -

B rersonaiity: % Component
nicz
O Ry Jtor D APP /NIPlay er nNICZ O =delilahJanlgov./Reposi = E1B

1
O = delilah.anl.gov:./Reposit = H1 B

s: Component: @ Component: delilahJanl.gov

DaPPSensor| Parser BOOTPManager
Sensort Parzer BOOTPManager

/Repogitory/Export/Component

4] D

& component : Component: [A] BoorPManager

DirectConnectionManager Etherlitelanager
DirectMessaging EtherliteManager

T =~
el

= z
]

‘& DirectMessaging

- -
—d EtherliteManager

4]

/Repository/Export/ Oose iz

4] O = delilah.anl.gov:./Reposit = H1 B

Use Cy delilahJanl.gov

/Repository/Export/Component /D

1 ID
< NIC2

5; Sensorfarser

dose r

Figure 28. Saving the completed new component, NIPlayer.
Note the Workspace's Jar Menu.

At this time, components stored in the WIP directory can be manipulated with a set of
externa utilitiesto move the component’s Jar into a more accessible area of the Repository
such as the Local or Export directory. These utilities are used to create a Tag for the
component, and the Tag is placed in the Repository so that the component may be accessed.
In the future, these utility functions will be integrated into the Composition Environment.

Composition of a simple Simulation.

In the previous section, a Player is composed from preexisting components residing in a Remote
Repository. It is stored in the WIP section of the Local Repository. Using tools externa to the
Composition Environment, that Jar is moved into a Remote Repository and given a corresponding

Tag.

27—

Figure 29 shows a composite screen shot of how the Composition Environment is used to
compose a simulation using the just composed NIPlayer and an existing Player, RoadBlockPlayer.

a Clipboard
@] Composition BBE| O WorkSpace0 =)=
New WorkSpace Jar Manipulate Configure
O - eridanus.lanl.gov:./Repo - E1B
New Palette
q - .
Empty Container eridanuslanl.gov
Show ClipBoard /Repository/Export/Simulation/E
Qear
| Qe | Preferences d [
5 Quit | a DAPPSIimEngine
O = eridanus.lanl.gov:./Repo = B B ;
eridanus lanl.gov
eridanus.lanl.gov:5056 ﬂ‘ Detete “ @ i B « E
] . Repository Simuation /D APF D R T I /Repository/Export/Simulation/D
| <] D
—— g _ .
l Component EV Component @ R
hotor FBAPP MNIFLayer 1 DT
] Repositol HiFtayer 7 roadlondler Qose e
O = eridanus.Janl.gov./Repo = F1B
eridanusJanl.gov
/Repository/Export/Actor
Personality <] D
] %= NiPfayer
W BoadBlockPayer
Qose 17

|./Eepu51(urg/ExuurUAcmr ||q
K Dl

Use Current Category

Figure 29. Construction of a simple Simulation
in the Composition Environment.

Here, two Remote Repositories are accessed simultaneoudy to build the smulation; there is no
hard restriction on the number of Remote Repositories that may be open in a session. The
simulation is then built from a single Personality and three components. Two of the components
are the two aforementioned Players, and the remaining component is a simulation engine that links
together the Players and puts them through the various initidization phases, communication hook-
up phase, and executes the simulation. The use of the smulation engine with a Run Time Adapter
to allow the user to run the smulation is delineated below.

RUN-TIME ADAPTERS

Once an executable component such as a Simulation or even a Player in adistributed smulation has
been composed, the next step is to execute it. As illustrated in Figure 30, it is not important as to
the nature of the executable component; it Ssmply needs to be executable; it must have a run-time
interface that can be made available to the Run-Time Adapter. The run time interface must have
sufficient methods to control an execution; the runnable interface and associated Personality that
has been in use as of the time of thiswriting islisted in Appendix G; the available methods are:

* initialize has a an int argument, phase; this allows a smulation designer to have a
number of discrete initialization steps.

— 28 —

» step isnot used yet. In the future, it may alow atime wise smulation to advance one
time step. It may have little or no meaning in a discrete-events simulation.

run is currently used to run the simulation rather than step.

pauseis not currently used. It may allow a simulation to pause.

stop stops a simulation.

terminate terminates a simulation. It embodies stop but is more final.

RunTimeAdapter
RunTimeAdapter
RunTim
Interface
Simulation ; .
Engine :
—RunTime
Interface
Player
Piae ayef] Player

Figure 30. A RunTimeAdapter may command any runnable component
such as a simulation (left) or an individual Player (right).

Run-Time Adapters are simple pieces of code that attach to an executable component and execute
it. Figure 31 showsthe stepsininvolved in attaching a Run-Time Adapter to a composed, runnable
component; note that these steps are performed by the Run-Time Adapter itself.

— 29 —

| RunTimeAdapteg)l—

| RunTimeAdapt

e

Component

[RunTime Interface|

Component

| RunTimeAdapter

er sonality

Component
[Per sonality

[RunTime Interface

¥

SJUSAT Jo 8duenbag

\l

RunTimeAdapter
extracts Personality
from Component

RunTimeAdapter
extracts RunTime
I nterface from

Per sonality

RunTimeAdapter
commands
RunTime
interface

Figure 31. How a RunTimeAdapter attaches itself to a

runnable component.

—-30-—

An example Run-Time Adapter that attaches to the smulation composed in the previous section is
listed in Appendix H. Note that the user need only specify the name of the Jar in which the
executable component resides and the name of the bean to instantiate in order to actually run the
simulation. In the future, the requirement to specify the name of the bean could be dropped; it
could be named in the Jar’ s manifest.

Run-Time Adapters are smple to design and implement on single platforms as illustrated by the
code listed in Appendix H. A Run-Time Adapter designed to manage a distributed simulation is
more interesting and is atopic of current study. Figure 32 illustrates the essentia functions of such
aRun-Time Adapter for adistributed simulation.

| RunTimeAdapter | .
Simulation

RunTimeAdapter
[Run! ap "IHPIayerServer|

Simulation =

Player %

Q

D

o,
m

2

| RunTimeAdapter | =
Simulation | ‘\I:;ngegortsgrmvaierf S m|ulationm

Comm 1 inx |_RUNTimeAdapter |
— ———Player]

—Continue distribution of remaining Players —

\J

Attach
RunTimeAdapter
to distributed
Simulation

Extract a Player
from the complete
Simulation and
transmit it

and its class(es)
toremote
platform

Attach
RunTimeAdapter
to remote Player
& establish
communication
with main
simulation

Distributed
Simulation
ready torun

Figure 32. Example of how to distribute a Simulation created in the

Composition Environment.

- 31 -

There are some interesting featuresin Figure 32 briefly addressed here:

* The first step, as usua, is to attach the Run-Time Adapter to the simulation. As
mentioned before, this can be as smple as specifying the name of the Jar in which the
simulation resides.

» Thenext step is to distribute the simulation among the various available platforms. The
figure shows this process involving the Run-Time Adapter, but it is possible to design
the simulation engine such that the primary Run-Time Adapter is ignorant of the
distributed nature of the run.

* It is assumed that the remote platform has some means of receiving the executable
component that isto run on it and save that component to a file. In the figure, some sort
of Player Server is postulated to be running on the remote platform, and it is able to set-
up arun locally.

» The Player Server attaches aloca Run-Time Adapter to the Player that it has recelved
and passes vital information on to it such as the host name and port number for the
simulation engine.

» Theremote Player then establishes alink to the simulation engine.

» This process continues for all the Playersin asimulation.

» Findly, the distributed smulation can go through the initidization steps and then
execute.

Clearly, Run-Time Adapters are straight forward to design and construct. in the future, they should
be an integral part of the Composition Environment so that the user need only instruct the
Composition Environment to execute the specified component, and the Composition Environment
takes care of al the necessary steps.

Future W oRK

Much has been accomplished in this study with good success. However, some of the necessary
elements, identified from the beginning, have been left undone because of time and monetary
constraints. Other important features have been identified as the study proceeded and are now
deemed to be highly desirable for eventua development. The important features proposed for
continued support are briefly discussed here:

Configuration Editors

As indicated earlier, Configuration Editors were always anticipated to be an integra part of the
Composition Environment. After all, putting together a collection of components to creste a new,
more useful component is only half the task of composition. The new component must be
localized and otherwise configured to be of any use in a simulation. For example, suppose the
user chooses to compose atank for usein a smulation. Once the tank has been composed to be a
particular type of tank, the user must then localize the tank — give it an initia location for it to
participate in the smulation asillustrated in Figure 33.

- 32—

Figure 33. Localization of a component.

Other configurable parameters might include the fuel load and the amount and type of ammunition
on board. All of these tasks would be accomplished by Configuration Editors in the Composition
Environment asindicated in Figure 34.

0= WoirkSpacel =————————— 0 H
Jar Manipulate Configure
Container: /Simulation/Simple -- Name: nul
Complete
Simple imple
Simulation imulation|
Personality n .
Players L |
= | . A A A
—r= ——— i '_- [
- | R Y
R "E\(\
) \ n} L w \{2

—== Player Confi
initial fuel load, kg [____|

Figure 34. Conceptional use of Configuration Editors.

— 33—

For those familiar with Sun’s BeanBox, the Configuration Editors resemble the Custom Editors
availableinthere. In fact the JavaBean's specification provides for Custom Editors. However, as
with icons, this built-in structure was deemed to be insufficient for the Composition Environment.

Configuration Editors, like icons, are envisioned as being residents of the Repository. Because
they are not integra to the component, Configuration Editors can evolve independently of
components; advances in Configuration Editors need not impact components at all. The designer of
a component need specify an appropriate type of Configuration Editor for configuration in only a
generdized manner; as with icons, it is specified by a descriptive String. The Composition
Environment can then offer the user alist of candidate Configuration Editors that are appropriate
for the selected component. This also means that a component designer need not be familiar with
the exact Configuration Editors available he need not be concerned about specifying an outdated
editor. By specifying an editor type, the Composition Environment may consult a dictionary and
provide the user with a selection of applicable editors. Further, the Composition Environment can
examine the component via Reflection and query to determine what parts of an editor are
applicable. We are aso examining generic ways of linking a given Configuration Editor to a
component so that a larger set of Configuration Editors is available for a given component; it is
expected that the BeanBox method of compiling specialized adapters on-the-fly, will be used.

We are also examining the use of Configuration Editors outside of the Composition Environment.
For example, it would be useful to have a set of such Editors or viewers available during the
execution of some simulation and certainly to assist in post-processing simulation data.

Editing Components

At this writing, the Composition Environment only builds components from other components.
However, as the Composition Environment comes into common use, it is anticipated that the
Repository will be populated with composite components that could be used in other than their
intended application if only they could be dlightly changed. For example, an Aircraft Player
intended for use in a monolithic (single platform) smulation could be used in a distributed
simulation if only its communication component were replaced by a new communication
component suitable for distributed communication.

This is not a demanding modification of the Composition Environment; it is relaively straight
forward to implement. It is a more interesting change for the Personality paradigm. The
Personality must be able to disconnect the removed component from the other constituents of the
composed component and introduce the new one. We are confident that once this process has been
explored, it can be mostly embodied in a parent Personality class and will be relatively simple for
the end devel oper to implement in his own Personality.

Consider an actua case. While the SAMSON and JWARS projects were under development, it
was deemed desirable to employ some of the same Playersin both simulations. While SAMSON is
a real-time, distributed smulation and JWARS is a discrete-events, monolithic simulation, the
overwhelming bulk of such a Player’s coding is identical; the main difference is the way that a
SAMSON Player references and communicates with another Player compared to that of IWARS.
In short, the difference between a Player in one smulation compared to amostly identica Player in
the other simulation, is the communication part. To use a Player from one ssimulation in the other, a
developer was forced to edit the relevant sections of code, recompile and relink; if the Player
changed, the developer was forced to repeat the editing, compile, and link. Clearly, if the Player-
to-Player communication part was isolated in areusable component, a Player could be transplanted
from one simulation to another simply by replacing that single communication component, and that
task should be an especially smple and quick one in the Composition Environment.

34—

Replaceable Comm
component

Player */

Figure 35. A Component (Player in this case) with a replaceable Comm
component may be used in a variety of simulations with a simple change.

Trainable Personality

It is apparent from the Congruous Component discussion that a considerable amount of design
work can be invested in the implementation of a specific Personality. A component’s Personality is
responsible for accepting and rgecting candidate, constituent components and writing the code to
perform this task can be a burden on the developer. To dleviate this encumbrance, it has been
suggested that a trainable Personality could be developed. To train such a Personality, it could be
instantiated in a Workspace and acceptable components could be dropped on it; as each
component is dropped on it, the Personality adapts to expect and alow only certain types of
components. Further Configuration Editors can be used on such atrainable Personality to fine tune
it. This promises to be an interesting and fruitful area of research.

Repository Management

In the examples, it was mentioned that the Player composed in the Composition Environment was
moved, via utilities, into the Repository and then used to compose a Simulation. These utilities
manipulate Jars and create Tags from those Jars with user assistance. With small effort these
utilities can be integrated into the Composition Environment so that when a component is
composed in one Workspace it becomes available amost immediately from the Repository for use
with other components. This functionality can also extend to the user’ s Export Repository enabling
auser to publish new or revised components quickly.

Legacy Code

It is assumed that there is a considerable store of legacy code that users might wish to continue to
use in new, composed simulations. This is particularly true because Java is a relatively new
language, and it is anticipated that few models have been implemented in Java as of this writing.
Because Java offers so many advantages and the Composition Environment can greatly improve
the ability to create and warehouse smulation components and smulations themselves, it is
desirable, in the long run, to convert existing models to Java and thus take full advantage of the
Composition Environment’s power. However, in the short term, it is possible to make use of
legacy code in the Composition Environment.

Java has awell defined interface to native code on any platform; as aresult, a Java head-end can be
provided to wrap any native code, and that head-end would be the same on any platform. Native
code could be provided for one or more platforms and included in the component’s Jar. The

— 35—

META-INF/COMPOSITION directory could host a new manifest file dealing with native code
issues; it could indicate what native code isin the Jar and the type of platform on which it will run.
During the composition phase, this information from the Jar can be communicated to the
component’s Personality and that could be used in composing and configuring the component or
enclosing components. In preparing for execution, the Personality could provide information on
suitable platforms and guard against the choice of a platform for execution contrary to that dictated
by the native code.

Expanded Manifest Information

Currently, a Composition Environment Jar contains simple Composition information that specifies
any Jars that must be loaded before the current one. Just above, it has been proposed to expand
this information to include information on native code required for the component. To facilitate the
design of distributed ssmulations, it is proposed that the Composition Manifest section of a Jar also
include a mapping of component to class files. If this information is present, then when a
component istransferred to a remote platform for execution, only those class byte-codes required
for that component need be transmitted with the Bean.

CONCLUSIONS

In this study, we have successfully implemented a prototype Composition Environment with a
distributed Repository. We have demondtrated the feasibility of a design environment where the
components themselves can participate in and even mediate in the composition of a greater,
composed component. It is clear that such expertise incorporated in the component give rise to an
environment where the user, not being a domain expert in the models he wishes to use, can be
guaranteed that the components he employs to construct a new, complete composite component
will function together and properly execute. Unfortunately, this is not to say that the composed
component will be the best component for the job or even yield the proper solution. Y et, sufficient
guidance could be embedded in the components so that the inexpert user could in fact construct a
component that is not only guaranteed to perform, but carries with it great assurance that it will
meet the user’ s needs.

Further, it has become clear that the requirements necessary to build such congruous components
can largely be built into the very parent classes necessary to participate in the Composition
Environment; as aresult, adomain expert can primarily concentrate on the model design and how it
might interact with other models rather than being concerned with extraneous coding required to fit
into a particular ssimulation. Beyond this, we have shown with the above examples, that it is
credible to maintain a distributed Repository of components that are available to build new,
composite components that, in short order, can be used to solve a particular problem or answer a
specific question.

Finally, the Composition Environment, Repository, and Run time environment developed and
demonstrated here meet the requirements set forth at the beginning of this paper. All of them run on
any machine with arecent version of the Java Virtual Machine (JVM) installed on it, and JVMs are
available, free of charge, for most computers from PC to Macintosh to Unix. With the features
described here and with the proposed enhancements, we can take a sample of our smulation and
domain expertise anywhere in the world and provide a comprehensive live demonstration of our
work. Moreover, we can begin to compile a Repository of components that embody a variety of
physica models, and as demands are placed on us for new simulations or smply for answers to
new questions, we can use the components in the Repository to quickly and accurately respond.
Recommendations

— 36 —

In previous sections, several areas were highlighted as worthy of continued development. Indeed,
some were identified as vital to make a viable Composition Manager. The suggested order of new
development is:

» Work on Configuration Editors should be given top priority because the Composition
Environment is pretty much crippled without them.

» A collection of generalized Configuration Editors that may be used by a variety of
components across simulations should quickly follow.

» The Repository should be populated with useful, interesting components from existing
simulations which will provide the basis of future simulations. These include.
- SAMSON (distributed)
- JWARS (discrete events)
- any current project that can be refashioned to fit into the Composition Environment.

37—

APPENDICES
A. GenericContainer.java listing.

package | anl.tsa3.simulation.infrastructure;

inport java.aw.*;

inport java.aw.event.*;
inport java. beans. Beanl nf o;
inport java.io.*;

inport java.util.Enumeration;

i nport com obj ect space. j gl . SLi st;

%
* CenericContainer is a Container that may be mani pul ated in the Conposition
* Environment. A CenericContainer represents a Reusabl e Conponent (or in Java
* parlance, bean). A CenericContainer will not accept 'ownership' of other
* CenericContainers until it has been given a Personality.

* @ee lanl.tsa3.sinulation.conposition.Personality
*

* @ersion 1.0 1997 Decenber
* @uthor C. P. Booker
*/

public class GenericContainer inplenents Serializable

{
protected Personality personality = null;
protected SLi st beans = null;

[**

* Construct an enpty GenericContai ner.
*/

public GenericContainer() { }

/**
* Attenpt to add a bean.
* @aram bean The object to be added. It may be either a Personality or a
* CenericCont ai ner.
* @eturn true if the bean was successful |y added.
*/
publ i ¢ bool ean addBean(Cbject bean)
{
if ((bean instanceof Personality) &% !(bean instanceof GenericContainer))

{

if (personality !'=null) return fal se;

personal ity = (Personality) bean;
return true;

}

if (personality == null) return false;

— 38 —

if (bean instanceof GenericContainer)

{

GenericContainer item= (GenericContainer) bean;
if (!(personality.addGenericContainer(item))) return false;

if (beans == null) beans = new SList();

beans. add(item);

return true;

}

return fal se;

}

/**
* Attenpt to renove a bean fromthe GenericContainer.
* (@aram bean The GenericContainer to be renoved.

* @eturn true if the renoval was successful .

*/
publ i c bool ean renmoveBean(bj ect bean)
{
if (personality == null) return fal se;

if (!'(bean instanceof GenericContainer)) return false;

if (!(personality.renoveGenericContainer((CenericContainer) bean))) return false;
if (beans == null) return fal se;

beans. renmove(bean);

return true;

}

/**
* Get a Beanlnfo suitable for this GenericContainer.

* @eturn A suitable Beanlnfo.

*
/
publ i c Beanl nfo getBeanl nfo()
{
if (personality == null) return null;

return personality.get Beanl nfo();

}

/**
* Get the Personality for this GenericContainer.
* @eturn This GenericContainer's Personality.
*/
public Personality getPersonality() { return personality; }

[**

* Get an array containing the contents of this GenericContainer.

— 39 —

* @eturn an array of GenericContainers which are contained in this GenericContai ner.
*/

public GenericContainer[] getBeans()
{

if (beans == null) return null;

Generi cContainer inventory[] = new GenericContainer[beans.size()];
int i =0

Enureration slist = beans. el ements();

whi | e(slist.hasMreEl enents())

{

GenericContainer item= (GenericContainer) slist.nextE enment();

inventory[i++ = item

}

return invent ory;

}

/**

* Make an in-depth copy of this bean. Note that references to objects outside
* of the GenericContainer are not copied.

* @eturn An in-depth copy of this bean.

*/

public GenericContai ner duplicate()

{

Generi cCont ai ner nyd one = new Generi cContai ner();

if (personality == null) return nyd one;

nyd one. addBean(personality. duplicatePersonality());

Enurreration inventory = beans. el enents();
whi | e(inventory. hashr eEl ements())

{

Generi cCont ai ner bean = (GenericContainer) inventory. nextEl enent();

Generi cCont ai ner newBean = bean. duplicate();

if (!'(nydone.addBean(bean))) continue; // Should throw exception!

}

return nyd one;

}

—40 -

B. Personality.java listing.

package | anl . tsa3.sinulation.infrastructure;

i mport java. beans. Beanl nf o;

/**

* The Personality Interface is inplemented by an object that

* creates a personality for an CenericContainer. Note that the

* met hod names here are designed not to interfere with nethods

* of GenericContainer; this is to accormodate Atons (CenericContainers

* that cannot be broken down into constituent GenericContainers) which

* have the option of descending from GenericContainer and inpl enenting the
* Personality Interface.

* @ee | anl.tsa3.sinulation.conposition.GenericContai ner

* @ersion 1.0 1997 Decenber
* @uthor C. P. Booker
*/

public interface Personality
{
/**
* queries whether or not the Personality will veto the
* candi date Generi cContai ner.
* (@aram bean A GenericContainer that could be added to the Personality's
* GenericContai ner.
* @eturn true if the Personality accepts the candi date bean.
*/

publ i c bool ean i nspect Generi cContai ner (CenericContainer bean);

/**

* constitues an attenpt to add a GenericContainer to another GenericContainer.
* The Personality may veto the add attenpt by returning false.

* @aram bean The candi date GenericContainer to be added to the Personality's
* GenericContai ner.

* @eturn true if the bean is acceptable for addition.

*/

publ i c bool ean addGeneri cCont ai ner (GenericContainer bean);

/**

* attenpts to renove a given bean fromthose known to the Personality.

* (@aram bean The GenericContainer to be renoved.

* @eturn true if the Personality recognizes the bean and if it was successfully renoved.
*/

publ i c bool ean renmoveCenericContai ner (CenericContainer bean);

/**

* returns a Beanlnfo suitable for the GenericContai ner
* with which it is associated.

* @eturn A Beanlnfo suitable for the CGenericContai ner
*/

publ i c Beanl nfo getBeanl nfo();

[**

41—

* Create a sinple copy of this Personality. That is the configuration is copied,
* but references to any GenericContainer beans are not copi ed.

* @eturn A sinple copy of this Personality.

*/

public Personality duplicatePersonality();

/**

* Specity the type of Personality.

* @eturn A String identifying the Personality Type.
*/

public String getPersonalityType();

/**
* |Indicate whether or not the Personality is separable fromits GenericContainer.
* An Atom (a GenericContainer that cannot be divided any farther) has an inseparable
* Personality.
* @ee lanl.tsa3.sinulation.conposition. GenericContainer
* @eturn true if separable (not atomc)
*/
publ i c bool ean separabl e();

/**

* Indicate a "nane" for the GenericContainer associated with this Personality.
* @eturn The nane associated with this Personality and its GenericContainer.
*/

public String get Name();

/**

* Set the nane for this Personality and its associ ated CGenericContai ner.
* @aram name The nane for this Personality.

*/

public void set Name(String name);

/**

* Get the fully qualified name of the Icon associated with this Personality.

* @eturn the fully qualified nane of the Icon associated with this Personality.
* null if no lcon is specified.

*/

public String getlconNane();

/**

* Set the fully qualified nane of the Icon associated with this Personality.

* @aramiconName The fully qualified name of the Icon associated with this Personality.
* null if nolcon is specified.

*/

public void setlconName(String iconNane);

/**

* Get the conpl eteness status of the associated contai ner.
* @eturn true if the associated container is conplete.

*/

publ i c bool ean i sConpl ete();

}
C. ComponentAtom.java listing.

—42 -

package | anl . t sa3. si nul ati on. conponent ;

import lanl.tsa3.simlation.infrastructure.*;

/**

* Conponent Atomis a conveni ence class sinplifying the construction of Atons.

* Any Atom need only extend Conponent Atom and override any nethods which need
* to be nade nore specific.

* Note: ConponentAtomis for Atons constructed by inplenenting Personality. An
* Atom need not inplenent Personality but may own one.

* @ersion 1.0 1998 April
* @uthor C. P. Booker
*/
public class Conponent At om ext ends GenericContainer inplements Personality
{

protected String name;

protected String i conNane "/ Part/ Generic";

protected String personalityType = "Conponent";

/**

* Construct a Conponent Atom Note that GenericContainer.personality is set
* to "this".

*/

publ i ¢ Conponent At on()

{ personality = this; }

[l ***** Generic Personality Methods *****

/**

* queries whether or not the Personality will veto the

* candi date GenericContainer. Since MessageConnectionManager is an Atom all
* are rejected.

* (@aram bean A GenericContainer that could be added to the Personality's

* GenericContai ner.

* @eturn true if the Personality accepts the candi date bean.

*/

publ i c bool ean i nspect Generi cContai ner (CenericContainer bean) { return false; }

/**

* constitues an attenpt to add a GenericContainer to another GenericContainer.
* The Personality may veto the add attenpt by returning false. Since

* MessageConnecti onManager is an Atom all

* are rejected.

* (@aram bean The candi date GenericContainer to be added to the Personality's
* GenericContai ner.

* @eturn true if the bean is acceptable for addition.

*/

publ i c bool ean addGeneri cCont ai ner (GenericContainer bean) { return false; }

[**

* attenpts to renove a given bean fromthose known to the Personality.
* @aram bean The GenericContainer to be renoved. Since MessageConnecti onManager is an

— 43—

* Atom all

* attenpts are rejected.

* @eturn true if the Personality recognizes the bean and if it was successfully renoved.
*/

publ i c bool ean renmoveCenericContai ner (CenericContainer bean) { return false; }

/**

* Create a sinple copy of this Personality. That is the configuration is copied,
* but references to any GenericContainer beans are not copied. This is an Atomso
* null is returned.

* @eturn A sinple copy of this Personality.

*/

public Personality duplicatePersonality() { return null; }

/**

* Specity the type of Personality.

* @eturn A String identifying the Personality Type.

*/

public String getPersonalityType() { return personalityType; }

/**

* Indicate whether or not the Personality is separable fromits GenericContainer.

* An Atom (a GenericContainer that cannot be divided any farther) has an inseparable
* Personality. Since this is an Atom false is always returned.

* @ee lanl.tsa3.sinmulation.conposition. GenericContainer

* @eturn true if separable (not atomc)

*/

public bool ean separable() { return false; }

/**

* Indicate a "nane" for the GenericContainer associated with this Personality.
* @eturn The nane associated with this Personality and its GenericContainer.
*/

public String getNarme() { return nane; }

/**

* Set the nane for this Personality and its associ ated CGenericContai ner.
* @aram name The nane for this Personality.

*/

public void setName(String name) { this.name = nane; }

/**

* Get the fully qualified nanme of the Icon associated with this Personality.

* @eturn the fully qualified nane of the Icon associated with this Personality.
* null if nolcon is specified.

*/

public String getlconName() { return iconNane; }

[**

* Set the fully qualified nane of the Icon associated with this Personality.
* @aramiconName The fully qualified name of the Icon associated with this Personality.

* null if nolcon is specified.
*/
public void setlconName(String iconNane) { this.iconNane = iconNane; }

[**

* Get the conpl eteness status of the associated contai ner.
* @eturn true if the associated container is conplete.

*/

public bool ean i sConmplete() { return true; }

— 45—

D. DAPPC2.java, DAPPC2Personality.java, and DAPPC2Impl.java listings.
DAPPC2.java

package | anl . tsa3. si nul ati on. act or. dapp. conponent ;
import java.util.*;
i mport com obj ect space. j gl . SLi st;

import |anl.tsa3.simlation.actor.dapp.*;

import |anl.tsa3.simlation. actor.dapp. messagi ng. nessage. *;

import |anl.tsa3.simlation. actor.dapp. messagi ng. nessagei nterpreter.*;
import |anl.tsa3.simlation.actor.dapp.pl ayer.*;

import |anl.tsa3.simlation. conmponent. *;

import lanl.tsa3.simlation.identification.*;

import lanl.tsa3.simlation.infrastructure.*;

import |anl.tsa3.simlation. messaging. *;

import |anl.tsa3.simlation. messagi ng. nessage. *;

import |anl.tsa3.simlation.runnable.*;

/**

* DAPPC2 is provided as the interface to any DAPP Player's C2.

*

* @ersion 1.0 1998 May

* @uthor C. P. Booker

*/

public interface DAPPC2 extends RunTi meCommands, Registerldentification
{

}

DAPPC2Personality.java

package | anl . tsa3. si nul ati on. act or. dapp. conponent ;

import |anl.tsa3.simlation.actor.dapp.*;
import lanl.tsa3.simlation.infrastructure.*;
import |anl.tsa3.simlation. messaging. *;
import |anl.tsa3.simlation.runnable.*;

/**
* The base Personality for all DAPP Pl ayers.
*
* @ersion 1.0 1998 May
* @uthor C. P. Booker
*/
public interface DAPPC2Personal ity extends DAPPPl ayer Personality
{
/**
* Get the MessageReceiver fromthis Player.
* (@aram recei ver The MessageRecei ver of the requestor.
* @aram requestor The nane of the requestor.
* @eturn The MessageRecei ver fromthis Player.
*/

publ i c MessageRecei ver get MessageRecei ver (MessageRecei ver receiver, String requestor);

— 46 —

/**
* Instruct the DAPPPl ayer to connect to another DAPPPI ayer.
* (@aram ot her Pl ayer The GenericContainer conprising the other Player.
*/

public voi d connect ToDAPPP| ayer (Generi cCont ai ner ot her Pl ayer);

/**
* Inspect a MessageConnecti onManager conponent.
* @ar am nessageConnect i onManager The candi date MesssageConnecti onManager .
* @eturn true if the candidate is acceptable.
*/
publ i c bool ean i nspect MessageConnect i onManager (MessageConnect i onManager
nessageConnect i onManager);

/**

* Attenpt to add a MessageConnecti onManager conponent.

* @ar am nessageConnect i onManager The candi date MesssageConnecti onManager .

* Use a null to clear the current choice.

* @eturn true if the candidate was accepted.

*/

publ i c bool ean set MessageConnect i onManager (MessageConnect i onManager
nessageConnect i onManager);

/**

* Get the reference to the extant MessageConnecti onManager, if any.
* @eturn a reference to the attached MessageConnecti onManager .

*/

publ i ¢ MessageConnect i onManager get MessageConnecti onManager () ;

}
DAPPC2Impl.java

package | anl . tsa3. si nul ati on. act or. dapp. conponent ;
import java.util.*;
i mport com obj ect space. j gl . SLi st;

import |anl.tsa3.simlation.actor.dapp.*;

import |anl.tsa3.simlation. actor.dapp. messagi ng. nessage. *;

import |anl.tsa3.simlation. actor.dapp. messagi ng. nessagei nterpreter.*;
import |anl.tsa3.simlation.actor.dapp.pl ayer.*;

import |anl.tsa3.simlation. conmponent. *;

import lanl.tsa3.simlation.identification.*;

import lanl.tsa3.simlation.infrastructure.*;

import |anl.tsa3.simlation. messaging. *;

import |anl.tsa3.simlation. messagi ng. nessage. *;

import |anl.tsa3.simlation.runnable.*;

[**

* DAPPC2I nmpl is provided as a base class for any DAPP Player's C2.

*

* @ersion 1.0 1998 May
* @uthor C. P. Booker

—47 —

*/
public abstract class DAPPC2I npl extends Conponent At om i npl enents DAPPC2Per sonality,
RunTi meCommands,
Regi sterldentification

{
protected String nane;
prot ect ed DAPPPI| ayer. DAPPP| ayer Type nyType = null;
prot ected Message nyl dentificati onMessage = nul | ;

prot ect ed MessageConnecti onManager connecti onManager ;

protected SList connect edPl ayers = null;

prot ect ed Messagel nterpreter nessagel ntrepreter = null;
protected PlayerlD t hi sPl ayer | D;

prot ect ed bool ean active = true;
protected doubl e currentTi me =0.;
protected | ong timedf Set =0

protected Timer Thr ead tinmer = null;
protected | ong ti meBet weenUpdat es = 1000;
protected SList | ocati onLi steners = new SList();

class TimerThread extends |anl.tsa3.sinulation.utility.SinpleTinerThread

{
public TinmerThread(long sleepTine) { super(sleepTinme); }
public void onExpiredTinme() { update(); }

}

/**
* Oreate a new DAPPC2I npl .
*/

publ i c DAPPC2I npl ()
{

thi sPlayer D = new Pl ayer| X);
t hi sPl ayer | D. pl ayer Nane = nane;

currentTime = 0. ;

/1 For the parent GenericContainer:

personality = this;
i conNarre = "/ Part/DAPP/ C2/ Generic";
personal i tyType = "DAPPC2";
}
/**

* Get the conpl eteness status of the associated contai ner.
* @eturn true if the associated container is conplete.

*
/
publ i c bool ean i sConpl et e()
{
if (connectionManager == null) return fal se;

return true;

}

[***** DAPPPC2Per sonal i ty nethods *****

[**

—48 —

* Get the MessageReceiver fromthis Player. Override this
* method if nore detailed tracking of connections is desired. Note, if this nethod
* is used, then nessagelntrepreter should be instantiated (probably in the child's
* constructor) before it is called.
* (@aram recei ver The MessageRecei ver of the requestor.
* @aram requestor The nane of the requestor.
* @eturn The MessageRecei ver fromthis Player.
*/
publ i c MessageRecei ver get MessageRecei ver (MessageRecei ver receiver, String requestor)
{
Pl ayer| D candi dat ePl ayer = connecti onManager . accept Connecti on(receiver, null, -1,
requestor, thisPlayerlD, nessagelntrepreter);
if (candidatePlayer == null) return null;
if (connectedPl ayers == null) connectedPl ayers = new SList();

connect edPl ayers. add(candi dat ePl ayer);

return candi dat ePl ayer. recei ver;

/**

* Instruct the DAPPPl ayer to connect to another DAPPPl ayer. Override this

* method if nore detailed tracking of connections is desired, but that is NOT

* suggested for future changes to the connection nmethod. Note, if this method

* is used, then nessagelntrepreter should be instantiated (probably in the child's
* constructor) before it is called.

* (@aram ot her Pl ayer The GenericContainer conprising the other Player.

*/

public void connect ToDAPPP| ayer (Generi cCont ai ner ot her Pl ayer)

{
Systemout . println("DAPPPl ayer.connect TODAPPP| ayer: other Pl ayer =

+ ot her Pl ayer);

Pl ayer| D candi dat ePl ayer = connecti onManager . est abl i shConnecti on(ot her Pl ayer, null,

thi sPl ayer| D, nmessagel ntrepreter);

Systemout.printin(" candi dat ePl ayer = " + candi dat ePl ayer);
if (candidatePl ayer == null) return;
if (connectedPl ayers == null) connectedPl ayers = new SList();

connect edPl ayers. add(candi dat ePl ayer);

/11dentificati onMessage nmessage = new | dentificati onMessage(nane, nyType, true);

Systemout.printin(" sender = " + candi datePl ayer. sender);
candi dat ePl ayer . sender . sendMessage(candi dat ePl ayer, nyldentificati onMessage);

Systemout.printin(" Sent identification message.");

/**
* Inspect a MessageConnecti onManager conponent.
* @ar am nmessageConnect i onManager The candi date MesssageConnecti onManager .
* @eturn true if the candidate is acceptable.
*/
publ i ¢ bool ean i nspect MessageConnect i onManager (MessageConnect i onManager
nmessageConnect i onManager)
{
if (connectionManager != null) return fal se;
/1 Right now only accept direct connections:
i f (messageConnecti onManager instanceof DirectConnMyrPersonality) return true;

—49 —

return fal se;

}

/**
* Attenpt to add a MessageConnecti onManager conponent.
* @ar am nessageConnect i onManager The candi date MesssageConnecti onManager .
* Use a null to clear the current choice.
* @eturn true if the candidate was accepted.
*/
publ i c bool ean set MessageConnect i onManager (MessageConnect i onManager
nessageConnect i onManager)
{
if (inspect MessageConnecti onManager (nmessageConnecti onManager))
{
connect i onManager = nessageConnect i onManager ;
/1if (beans == null) beans = new SList();
/I beans. add((GenericContai ner) nessageConnecti onManager);
return true;

}

el se return fal se;

/**

* Get the reference to the extant MessageConnecti onManager, if any.
* @eturn a reference to the attached MessageConnecti onManager .

*/

publ i c MessageConnect i onManager get MessageConnecti onManager ()

{ return connecti onManager; }

/1 ***** Runnabl ePersonal ity Methods *****

/**

* Get the RunTi meConmand interface for this Reusabl e Conponent.

* @eturn The RunTi meConmand interface for this Reusabl e Conponent.
*/

publ i ¢ RunTi mneConmands get RunTi neCommands() { return this; }

/1 ***** Registerldentification method *****
/**

* Receive identification information fromanother Pl ayer. Note: Override
* this nmethod for a specific Player.

* @aram sender The PlayerI D identifying the sender.

* @aram regi sterNane The nane of the Sender.

* @aramtype The sender's type.

* @aramrsvp If true an ldentificationMessage is requested in return.
*/
public void registerldentification(PlayerlD sender, String registerNaneg,

DAPPPI ayer . DAPPP| ayer Type type, bool ean rsvp)

{

/1 This Player does not care about others and so takes not action.

/*

Systemout . println("DAPPPl ayer received Registerldentification: \n" +

" sender = " + sender + "\n" +
" nane =" + registerName + "\n" +
" type =" + type);

—50 -

*/

if (registerName != null) sender.playerNane = regi sterNane;
if (rsvp)
{

I dentificati onMessage nmessage = new | dentificati onMessage(nane, nyType, false);
/1 Systemout.println(" sender = " + sender.sender);

sender . sender . sendMessage(sender, nessage);

/1 Systemout.println(" Sent identification nmessage.");

[/ ***** RunTi meCommands Met hods *****

[**

* Initialize a Reusabl e Conponent. Override to inplenent.
* @aram phase An int specifying the phase of initialization.
*/

public void initialize(int phase)

{1

/**

* Force the Reusabl e Conponent to take a step. Override to inplenent.
*/

public void step() {}

/**

* Force the Reusabl e Conponent to pause. Override to inplenent.
*/

public void pause() {}

/**
* Al ow the Reusabl e Conponent to run. Override to inplenent.
*/

public void run()

{

active = true;

timefSet = SystemcurrentTimeMI1is();
currentTime = 0.;

updat e();

[**

* Force the Reusabl e Conponent to stop. Override to inplenent.

*/
public void stop()
{
active = fal se;
if (timer !'=null) tinmer.interrupt();
}
/**

* Force the Reusabl e Conponent to terminate. Override to inplenent.
*/
public void term nate()

{

—51 -

if (connectionManager != null) connectionManager. shut Down();

}

/**
* For time-step based Players, a way to advance in tinme. Override to inplenent.
*/
protected void update()
{
if ('active) return;
long tenpTine = SystemcurrentTimeMIlis() - tinmeOfSet;
if (tenpTinme > 0) currentTinme = ((double) tenpTine)/1000.;
timer = new TinerThread(tinmeBetweenUpdates);

}

— 52 —

E. NIC2.java, NIC2Personality.java, and NIC2Impl.java listings.
NIC2.java

package | anl . tsa3. si nul ati on. act or. dapp. conponent ;
import java.util.*;
i mport com obj ect space. j gl . SLi st;

import |anl.tsa3.simlation.actor.dapp.*;

import |anl.tsa3.simlation. actor.dapp. messagi ng. nessage. *;

import |anl.tsa3.simlation. actor.dapp. messagi ng. nessagei nterpreter.*;
import |anl.tsa3.simlation.actor.dapp.pl ayer.*;

import |anl.tsa3.simlation. conmponent. *;

import lanl.tsa3.simlation.identification.*;

import lanl.tsa3.simlation.infrastructure.*;

import |anl.tsa3.simlation. messaging. *;

import |anl.tsa3.simlation. messagi ng. nessage. *;

import |anl.tsa3.simlation.runnable.*;

/**

* NQ is provided as a base interface for an NI Player's C2.
*

* @ersion 1.0 1998 May

* @uthor C. P. Booker

*/

public interface NIC2 extends DAPPC2, Regi ster SensorLocLi stener
{

}

NIC2Personality.java

package | anl . tsa3. si nul ati on. act or. dapp. conponent ;

import lanl.tsa3.simlation.infrastructure.*;
import |anl.tsa3.simlation. messaging. *;
import |anl.tsa3.simlation.runnable.*;

/**
* The Personality for all N C2s.
*
* @ersion 1.0 1998 May
* @uthor C. P. Booker
*/
public interface NI C2Personal ity extends DAPPC2Personality
{
/**
* Get the interface to the N C2.
* @eturn The interface to the N C2.
*/
public NIC2 getN C2();
}

NIC2Impl.java

— 53—

package | anl . tsa3. si nul ati on. act or. dapp. conponent ;

import java.util.*;

i mport com obj ect space. j gl . SLi st;

import |anl.tsa3.simlation.actor.dapp.*;

import |anl.tsa3.simlation. actor.dapp. messagi ng. nessage. *;
import |anl.tsa3.simlation. actor.dapp. messagi ng. nessagei nterpreter.*;
import |anl.tsa3.simlation.actor.dapp.pl ayer.*;

import |anl.tsa3.simlation. conmponent. *;

import |anl.tsa3.simlation. conponent. hardware. *;

import lanl.tsa3.simlation.identification.*;

import lanl.tsa3.simlation.infrastructure.*;

import |anl.tsa3.simlation. messaging. *;

import |anl.tsa3.simlation. messagi ng. nessage. *;

import |anl.tsa3.simlation.runnable.*;

%
* NQ is the N Player's Q.
*

* @ersion 1.0 1998 May

* @uthor C. P. Booker

*/
public class N C2Inpl extends DAPPC2I npl inplenments Nl C2Personality,
N C2,
Regi sterldentification,
Regi st er Sensor LocLi st ener
{
protected SList | ocati onLi steners = new SList();
prot ect ed BOOTPManager boot pManager = null;
protected EtherliteManager etherliteManager = null;
protected EtherliteS ave etherliteSl ave = null;
/**
* Create a new NNC2. Note: in the constructor, some super field variable
* are set:
* 1. super.nessagelntrepreter is set to the NC
* 2. super.nyType is set to the N PLAYERTYPE
* 3. super.iconNane is specified
* 4. super.nyldentificati onMessage is created
*/
public N C2Inpl ()
{
super();
nyType = DAPPPI ayer . N PLAYERTYPE;
i conNarre = "/ Part/ DAPP/ C2/ N C2";
nmessagel ntrepreter = this;
nyl dentificati onMessage = new I dentificati onMessage(nane, nyType, true);
personal i tyType ="N";
}
/**

* Get the conpl eteness status of the associated contai ner.

—54—

* @eturn true if the associated container is conplete.
*/

publ i c bool ean i sConpl et e()
{

if (!super.isConplete()) return false;

if (bootpManager == null) return false;
if (etherliteManager == null) return false;
if (etherliteSlave == null) return fal se;

return true;

}

/1 ***** RunTi meConmands Met hods *****
/**
* Initialize a Reusabl e Conponent. Override to inplenent. Note that 2
* initializtion steps are required.
* @aram phase An int specifying the phase of initialization.
*/
public void initialize(int phase)
{
if (phase == 0) boot pManager. startBOOTP() ;
if (phase == 1)
{
String ipControl | edDevi ce = boot pManager . get Control | edDevi ce();
et herliteManager. connect To(i pControl | edDevice, 1, etherliteS ave);

}

/**

* Force the Reusabl e Conponent to pause. Override to inplenent.
*/

public void pause() {}

/**

* Connect to the Sensors and parse data.
*/

public void run()

{
et herliteManager.run();

etherliteSlave. run();

}

/**

* Force the Reusabl e Conponent to stop. Override to inplenent.
*/

public void stop() {}

/**
* Force the Reusabl e Conponent to terminate. Override to inplenent.
*/

public void term nate()

{

— 55 —

Systemout.printin("NNCQ termnating...");
super.termnate();

if (bootpManager != null) boot pManager . shut Down() ;

if (etherliteManager != null) etherliteManager. shutDown();
if (etherliteSlave !=null) etherliteS ave.shutDown();

}

/1 ***** Regi st er Sensor LocLi st ener *****

/**

* Request that the sender be placed on

* an announcenent list for all Sensor Location Messages.

* @aramrequestor The id of the DAPPPl ayer desiring to receive all Sensor

* Not Respondi ng Messages.
* @aram regi sterNane The nane of the requestor.
*/

public void registerSensorLocListener(PlayerlD requestor, String registerNane)

{
Systemout. println("N Pl ayer.registerSensorLocLi stener: otherPl ayer
/1if (locationListeners == null) locationListeners = new SList();

| ocati onLi steners. add(requestor); // Should check for duplicates.

}

/**

* Get the RunTi meConmmand interface for this Reusabl e Conponent.

* @eturn The RunTi meConmand interface for this Reusabl e Conponent.
*/

publ i ¢ RunTi meConmands get RunTi nreCommands() { return this; }

/**

* Get the interface to the N C2.

* @eturn The interface to the N C2.
*/

public NNC getNNC2() { return this; }

/**

* queries whether or not the Personality will veto the
* candi date GenericContainer. This NIC2 accepts only:
* - BOOTPManager

* - EtherliteMnager

* - Sensor Par ser

* (@aram bean A GenericContainer that could be added to the Personality's

* GenericCont ai ner.
* @eturn true if the Personality accepts the candi date bean.
*/
publ i c bool ean i nspect Generi cContai ner (CenericContai ner bean)
{
Personal ity personality = bean.getPersonality();
if (personality instanceof MsgConnect MyrPersonality)

{

MsgConnect Myr Personal ity tenp = (MsgConnect Myr Personal i ty) personality;

+ requestor);

return super.inspect MessageConnect i onManager (tenp. get MessageConnect i onManager ());

}
if (personality instanceof BOOTPManager Personality)

{

— 56 —

if (bootpManager != null) return false;
BOOTPManager Per sonal i ty tenpP = (BOOTPManager Personal ity) personality;

return true;

}
if (personality instanceof EtherliteMrPersonality)
{

if (etherliteManager != null) return false;

EtherliteMrPersonal ity tenpP = (EtherliteMyrPersonality) personality;

return true;

}
if (personality instanceof SensorParserPersonality)
{

if (etherliteSlave !'=null) return fal se;

Sensor Par ser Personal ity tenpP = (Sensor ParserPersonality) personality;
return true;
}

return fal se;

}

/**

* Add acandi date CenericContainer. This NIC2 accepts only:

* - BOOTPManager

* - EtherliteMnager

* - Sensor Par ser

* (@aram bean A GenericContainer that could be added to the Personality's
* GenericContai ner.

* @eturn true if the Personality accepts the candi date bean.

*/

publ i c bool ean addGeneri cContai ner (GenericContainer bean)

{

if (inspectGenericContainer(bean))
{
Personal ity personality = bean. getPersonality();
if (personality instanceof BOOTPManager Personality)
{
BOOTPManager Per sonal i ty tenpP = (BOOTPManager Per sonal i ty) personality;
boot pManager = t enpP. get BOOTPManager () ;
/1if (beans == null) beans = new SList();
|/ beans. add(bean);
return true;
}
if (personality instanceof EtherliteMrPersonality)
{
Et herliteMyrPersonality tenpP = (EtherliteMyrPersonality) personality;
etherliteManager = tenpP. get Et herliteManager();
/1if (beans == null) beans = new SList();
|/ beans. add(bean);
return true;
}
if (personality instanceof SensorParserPersonality)
{
Sensor Par ser Personal ity tenpP = (SensorParserPersonality) personality;
etherliteS ave = tenpP.getEtherliteS ave();
etherliteSl ave. set Locati onLi steners(| ocationListeners);

—57—

/1if (beans == null) beans = new SList();
|/ beans. add(bean);
return true;
}
if (personality instanceof MessageConnectionManager)
{
MsgConnect Myr Personal ity tenp = (MsgConnect Myr Personal ity) personality;
super . set MessageConnect i onManager (t enp. get MessageConnect i onManager ());
return true;
}
}
return fal se;

}

/] ***** Registerldentification method *****
/**
* Receive identification information from another Pl ayer.
* @aram sender The PlayerI D identifying the sender.
* @aram regi sterNanme The nane of the Sender.
* @aramtype The sender's type.
* @aramrsvp If true an ldentificationMessage is requested in return.
*/
public void registerldentification(PlayerlD sender, String registerNaneg,
DAPPPI ayer . DAPPPI ayer Type type, bool ean rsvp)
{
/1 This Player does not care about others and so takes not action.
Systemout.printin("N Pl ayer received Registerldentification: \n" +

sender = " + sender + "\n" +
nane =" + registerName + "\n" +
type =" +type);
if (registerName != null) sender.playerNane = regi sterNane;
if (rsvp)
{

I dentificati onMessage nmessage = new | dentificati onMessage(nane, nyType, false);
Systemout.printin(" sender = " + sender.sender);

sender . sender . sendMessage(sender, nessage);

Systemout.printin(" Sent identification nessage.");

}

— 58 —

F. NIPlayerPersonality.java and NIPlayerPersimpl.java

package | anl.tsa3. siml ation. actor. dapp. pl ayer;

inport lanl.
inport 1|anl
inport |anl
inport lanl.
/**

tsa3. sinul ation

.tsa3.simulation
.tsa3.sinmulation

tsa3. sinul ation

.actor.dapp. *;
.infrastructure.*;

. messagi ng. MessageRecei ver ;
.runnabl e. *;

* The Personality for N Pl ayers.

*

* @ersion 1.0 1998 May
* @uthor C. P. Booker

*/

public interface N Pl ayerPersonal ity extends DAPPPlI ayer Personal ity

{
}

package | anl.tsa3. simlation. actor. dapp. pl ayer;

i nport com obj ect space. j gl . SLi st;

inport lanl.
inport 1|anl
inport 1|anl
inport lanl.
inport |anl
inport |anl
inport lanl.
inport 1anl
inport 1anl
%

tsa3.
.tsa3.
.tsa3.
tsa3.
.tsa3.
.tsa3.
tsa3.
.tsa3.
.tsa3.

Si
Si
Si
Si
Si
Si
Si
Si
Si

nul at i
nul at i
nmul at i
nmul at i
nul at i
nul at i
nul ati
nul at i
nul at i

on.

on.

on.

on.

on.

on.

on.

on.

on.

act or . dapp. *;
act or . dapp. conponent . *;

conponent . har dwar e. *;
identification.*;
infrastructure.*;
messagi ng. *;

runnabl e. *;

* The Network Interface Player parses digital mlti-sli

act or. dapp. messagi ng. messagei nterpreter.*;
act or. dapp. messagi ng. nessage. *;

ce Frame data, converts

* it into the corresponding Message, and distributes it to any Player that has

* registered as being interested in the specified data.

*

* @ersion 1.0 1998 Apri l
* @uthor C. P. Booker

*/

public class N Pl ayerPerslnpl extends DAPPPl ayer Per sl npl

protected
protected
protected
protect ed
protect ed
protected

Ceneri cCont ai ner ni QCont ai ner

N 2

ni Q2

Ceneri cCont ai ner boot pManager Cont ai ner

Ceneri cCont ai ner et herliteManager Cont ai ner

Ceneri cCont ai ner sensor Par ser Cont ai ner

Ceneri cCont ai ner nmessagi hgvanager

inplenents java.io.Serializable,
N Pl ayer Personal ity,
Regi st er Sensor LocLi st ener

= null;
= null;
= null;
= null;
= null;
= null;

— 59 —

prot ected RunTi meCommands runTi meConmands = null;

[**

* Construct the N Player.

*/
public N Pl ayerPerslnpl ()
{

super();

personal i tyType = "/ Actor/ DAPP/ NI Pl ayer";
"/ Act or/ DAPP/ Pl ayer/ NI Pl ayer";

i conNarre

}

/**
* Set the nane for this Personality and its associ ated CGenericContai ner.
* @aram name The nane for this Personality.
*/
public void set Name(String name)
{
super. set Nane(nane);
if (niCQContainer != null) ni CContainer.getPersonality().setNane(nane);

}

/**

* Get the conpl eteness status of the associated contai ner.
* @eturn true if the associated container is conplete.

*/

publ i c bool ean i sConpl et e()

{

if (!super.isConplete()) return false;

Personal ity personality;

if (niCQContainer == null) return false;
personal ity = ni QCont ai ner. get Personal ity();
if (!'personality.isConplete()) return false;
if (bootpManager Container == null) return fal se;
personal ity = boot pManager Cont ai ner . get Per sonal i ty();
if (!personality.isConplete()) return false;
if (etherliteManagerContainer == null) return false;
personality = etherliteManager Cont ai ner. get Personality();
if (!'personality.isConplete()) return false;
if (sensorParserContainer == null) return fal se;
personal ity = sensor Par ser Cont ai ner. get Personal i ty();

if (!personality.isConplete()) return false;

return true;

}

/**
* queries whether or not the Personality will veto the
* candi date Generi cContai ner.
* (@aram bean A GenericContainer that could be added to the Personality's
* GenericContai ner.

* @eturn true if the Personality accepts the candi date bean.

— 60 —

*/
publ i c bool ean i nspect Generi cContai ner (CenericContainer bean)
{
Personal ity personality = bean.getPersonality();
if (personality instanceof MsgConnect MyrPersonality)

{

if (nmessagi ngManager != null) return false;

MsgConnect Myr Personal ity tenp = (MsgConnect Myr Personal i ty) personality;
if (niQContainer == null) return true;

DAPPC2Per sonal ity tenpC2P = (DAPPC2Per sonal i ty) ni C2Cont ai ner. get Personal ity();
return tenpC2P. i nspect MessageConnect i onManager (t enp. get MessageConnect i onManager ());

if (personality instanceof BOOTPManager Personality)
{
if (bootpManager Container !'= null) return false;
if (niQContainer == null) return true;
return ni QCont ai ner. get Personal i ty().inspect Generi cCont ai ner(bean);

}

if (personality instanceof EtherliteMyrPersonality)
{
if (etherliteManagerContainer != null) return false;
if (niQContainer == null) return true;
return ni QCont ai ner. get Personal i ty().inspect Generi cCont ai ner(bean);

}

if (personality instanceof SensorParserPersonality)
{
if (sensorParserContainer !=null) return false;
if (niQContainer == null) return true;
return ni QCont ai ner. get Personal i ty().inspect Generi cCont ai ner(bean);

}

if (personality instanceof Nl C2Personality)
{
if (niQContainer !'=null) return false;
/1 Check extant owned conponents against the candidate C. If any fail, then
/1 this C is not acceptable:
bool ean candi dat eTest = true;
if (bootpManager Container != null) candi dat eTest =
personality.inspect GenericContai ner (boot pManager Cont ai ner);
if (!'candidateTest) return false;
if (etherliteManagerContainer != null) candidateTest =
personal ity.inspect GenericContai ner(etherliteManager Container);
if (!candidateTest) return false;
if (sensorParserContainer !=null) candi dat eTest =
personality.inspect GenericContai ner(sensorParser Cont ai ner);
if (!candidateTest) return false;
return true;

}

return fal se;

}

— 61—

/**
* constitues an attenpt to add a GenericContainer to another GenericContainer.
* The Personality may veto the add attenpt by returning false.
* (@aram bean The candi date GenericContainer to be added to the Personality's
* GenericContai ner.
* @eturn true if the bean is acceptable for addition.
*/
publ i c bool ean addGeneri cCont ai ner (GenericContainer bean)
{
if (inspectGenericContainer(bean))
{ I/ bean is acceptable, hook it up:
Personal ity personality = bean. getPersonality();
if (personality instanceof Nl C2Personality)
{
N C2Per sonal ity tenpPersonality = (N C2Personality) personality;
runTi neCommands = tenpPersonality. get RunTi meCommands() ;
ni C2Cont ai ner = bean;
ni 2 = tenpPersonal ity. getNl C2();

if (bootpManager Container != null)
ni C2Cont ai ner . addBean(boot pManager Cont ai ner) ;
if (etherliteManagerContainer != null)
ni C2Cont ai ner . addBean(et herl i t eManager Cont ai ner);
if (sensorParserContainer != null)
ni C2Cont ai ner . addBean(sensor Par ser Cont ai ner);
if (nmessagi ngManager !'= null)
ni C2Cont ai ner. addBean(nessagi ngManager);
return true;
}
if (personality instanceof BOOTPManager Personality)
{
if (niCQContainer != null) ni CContainer.addBean(bean);
boot pManager Cont ai ner = bean;
return true;

}

if (personality instanceof EtherliteMrPersonality)

{
if (niQContainer !'= null) niCQContainer.addBean(bean);
et herl i t eManager Cont ai ner = bean;

return true;

}

if (personality instanceof SensorParserPersonality)

{
if (niQContainer !'= null) niCContainer.addBean(bean);
sensor Par ser Cont ai ner = bean;

return true;

}

if (personality instanceof MessageConnectionManager)

{
if (niQContainer !'= null) niCQContainer.addBean(bean);
nessagi ngvanager = bean;

— 62 —

return true;
}
}
return fal se;

}

/1 ***** RunTi meConmands Met hods *****

/**

* Initialize a Reusabl e Conponent. Override to inplenent. Note that 2
* initializtion steps are required.

* @aram phase An int specifying the phase of initialization.

*/

public void initialize(int phase)

{ if (runTinmeComands != null) runTi meConmands.initialize(phase); }
/**

* Connect to the Sensors and parse data.

*/

public void run()

{ if (runTinmeComands != null) runTi meCommands.run(); }

/] ***** Registerldentification method *****
/**
* Receive identification information from another Pl ayer.
* @aram sender The PlayerI D identifying the sender.
* @aram regi sterNanme The nane of the Sender.
* @aramtype The sender's type.
* @aramrsvp If true an ldentificationMessage is requested in return.
*/
public void registerldentification(PlayerlD sender, String registerNaneg,
DAPPPI ayer . DAPPPI ayer Type type, bool ean rsvp)
{if (ni !=null) niC.registerldentification(sender, registerNane, type, rsvp); }

/] ***** Regi st er Sensor LocLi st ener ***x*

/**

* Request that the sender be placed on

* an announcenent list for all Sensor Location Messages.

* @aramrequestor The id of the DAPPPl ayer desiring to receive all Sensor

* Not Respondi ng Messages.

* @aram regi sterNanme The nane of the requestor.

*/

public void registerSensorLocListener(PlayerlD requestor, String registerNane)

{ if (niQ !'=null) niQ.registerSensorlLocListener(requestor, registerNane); }

/**

* Get the MessageReceiver fromthis Player.

* @aram recei ver The MessageRecei ver of the requestor.
* @aramrequestor The name of the requestor.

* @eturn The MessageRecei ver fromthis Player.

*/
publ i c MessageRecei ver get MessageRecei ver (MessageRecei ver receiver, String requestor)
{

if (niQContainer == null) return null;

DAPPC2Per sonal ity tenpP = (DAPPC2Per sonal i ty) ni C2Cont ai ner. get Personal ity();
return tenpP. get MessageRecei ver (receiver, requestor);

— 63—

/**
* Get the RunTi meCommand interface for this Reusabl e Conponent.
* @eturn The RunTi meConmand interface for this Reusabl e Conponent.
*/
publ i ¢ RunTi meConmands get RunTi neCommands()
{
if (runTinmeConmands != null) return runTi neConmands;

return (RunTi mreCommands) this;

}

/**
* Instruct the DAPPPl ayer to connect to another DAPPPl ayer. Override this
* method if nore detailed tracking of connections is desired, but that is NOT
* suggested for future changes to the connection nethod. Note, if this method
* is used, then nessagelntrepreter should be instantiated (probably in the child's
* constructor) before it is called.
* (@aram ot her Pl ayer The GenericContainer conprising the other Player.
*/
public void connect ToDAPPP| ayer (Generi cCont ai ner ot her Pl ayer)
{
if (niQContainer !=null)
{
N C2Per sonal ity tenpP = (N C2Personal ity) ni C2Cont ai ner. get Personality();
t enpP. connect ToDAPPPI ayer (ot her Pl ayer);
return;
}
super . connect ToDAPPP| ayer (ot her Pl ayer);

}

—64-—

G. RunnablePersonality.java and RunTimeCommands.java

package | anl.tsa3. simlation.runnabl e;

inport lanl.tsa3.simulation.infrastructure.*;

%
* Runnabl ePersonality is the base Personality for all Reusabl e Conponents
* that are runnable (ie. have Run Time Commands).

*

* @ersion 1.0 1998 Apri l

* @uthor C. P. Booker

*/

public interface Runnabl ePersonal ity extends Personality

{

/**
* Get the RunTi meConmand interface for this Reusabl e Conmponent.
* @eturn The RunTi neConmand interface for this Reusabl e Conponent.
*/

publ i ¢ RunTi neCommands get RunTi meCommands() ;

}

package lanl.tsa3.smulation.runnabl e;

/**
* The RunTi meCommands interface provides access to the Run Tine nethods

* of a Simulation, Actor, etc.

*
* @ersion 1.0 1998 April

* @uthor C. P. Booker

*/

public interface RunTi meCommands

{

%
* |Initialize a Reusabl e Conponent.
* @aram phase An int specifying the phase of initialization.
*/

public void initialize(int phase);

/**
* Force the Reusabl e Conponent to take a step.
*/

public void step();

/**
* Force the Reusabl e Conponent to pause.
*/

public void pause();

[**

* Al ow the Reusabl e Conponent to run.

— 65—

*/
public void run();

/**

* Force the Reusabl e Conponent to stop.
*/

public void stop();

/**
* Force the Reusabl e Conponent to term nate.
*/

public void termnate();

— 66 —

H. RunTimeAdaptor.java

package | anl . tsa3. si nul ati on. runnabl e;

import java.io.*;
import java.util.zip.*;

import lanl.tsa3.simlation.infrastructure.*;

public class RunTi meAdapt or

{

prot ected RunTi meCommands runTinme = nul | ;

class TimerThread extends Thread

{

protected | ong sleepTinme = 1; // ns

Ti mer Thread(| ong sl eepTine)

{
this. sl eepTime = sl eepTi ne;
start();

}

public void run()
{
try
{
synchroni zed(this) { wait(sleepTine); }
} catch(Exception e)
{ Systemout.println("*** Error: unable to sleep."); }

st opRunni ng() ;
}

public static void main(String[] args)

{
RunTi meAdapt or runTi neAdapt or = new RunTi meAdaptor(args[0], args[1]);

}

publ i c RunTi meAdaptor(String beanNane, String jarNanme)

{
Systemout.printin("Starting the RunTi neAdaptor...");

Generi cCont ai ner bean = readBean(beanNane, jarNane);

if (bean == null) return;

Personal ity personality = bean.getPersonality();

Systemout. println("RunTi meAdaptor: using bean = " + bean + " =>" + personality);
Runnabl ePer sonal i ty runnabl e = (Runnabl ePersonality) personality;

runTi ne = runnabl e. get RunTi neCommands() ;

Systemout . println("Found RunTi meConmands: " + runTime);

runTine.initialize(-1);

— 67—

runTine.run();

Timer Thread tinmer = new Ti mer Thread(21000);

Systemout.printin("Letting Tinmer Thread run...");

}

public GenericContainer readBean(String beanNane, String jarNane)

{
byte buffer[] = new byte[1024];
try
{

Zi pl nput Stream zi s = new Zi pl nput St r ean{
new Buf f er edl nput St r ean(
new FilelnputStrean(jarNanme)));
ZipEntry ent = null;
while ((ent = zis.getNextEntry()) !'= null)
{
String nane = ent.get Name();
/* the object we're |oading */
Byt eArrayQut put St ream baos = new Byt eArrayQut put Strean();

/* NOTE: W don't know the size of an entry until
we' ve reached the end of one because of
conpression. This neans we can't just do a get size
and read in the entry.

*/

for (;;)

{
int len = zis.read(buffer);
if (len < 0) break;
baos. wite(buffer, 0, len);

}

if (!name.equal s(beanNane)) conti nue;

Cbj ect I nput Stream oi s = new bj ect | nput St r ean(
new Byt eArrayl nput Strean(baos.toByteArray()));
Cbj ect candi dat eBean = oi s. readChj ect();

ois.close();

Systemout . println("RunTi neAdapt or. readBean: found object = " + candi dat eBean
)
return (GenericContainer) candi dateBean;
}
} catch(Exception e)
{
Systemout.printin("$$$ Error: Unable to read bean = " + beanName +

" fromJdar =" + jarNane +" e =" + e);
e.printStackTrace();

}

return null;

}

public void stopRunni ng()

— 68 —

}

{ runTime.termnate(); }

— 69 —

REFERENCES

o~ wbhe

© © N o

11.
12.

13.
14.

15.
16.
17.

David Flanagan, Java in a Nutshell (Sebastopol, CA: O’ Reilly & Associates, Inc., 1997).
Bruce Eckel, Thinking in Java (Upper Saddle River, NJ: Prentice Hall PTR, 1998).

Los Alamos National Laboratory, Samson User’s Manual (Los Alamos, NM: Los Alamos
National Laboratory, 1996).

Elliotte Rusty Harold, Java Neetwork Programming (Sebastopol, CA: O'Rellly &
Associates, Inc., 1997).

Merlin and Conrad Hughes, Michael Shoffner, and Maria Winslow, Java Network
Programming, (Greenwich, CT: Manning Publications, Co. 1996).

Prashant Sr)idharan, Advanced Java Networking (Upper Saddle River, NJ: Prentice Hall
PTR, 1997).

Troy Bryan Downing, Java RMI: Remote Method Invocation (Foster City, CA: IDG
Books Worldwide, Inc., 1998).

Rob Gordon, Essential JNI: Java Native Interface (Upper Saddle River, NJ: Prentice Hall
PTR, 1998).

Scott)Oaks and Henry Wong, Java Threads (Sebastopol, CA: O’ Reilly & Associates, Inc.,
1997).

. Doug Lea, Concurrent Programming in Java: Design Principles and Patterns (Reading,

MA: Addison-Wesley Publishing Co., 1997).

Steven Gutz, Up to Speed with Swing: User interfaces with Hava Foundation Classes
(Greenwich, CT: Manning Publications Co., 1998).

Daniel I. Joshi and Pavel A. Vorobiev, JFC: Java Foundation Classes (Foster City, CA:
IDG Books Worldwide, Inc., 1998).

Matthew T. Nelson, Java Foundation Classes (New York, NY: McGraw-Hill, 1998).
Michael Morrison, Randy Weems, Peter Coffee, and Jack Leong, How to Program
JavaBeans (Emeryville, CA: Ziff-Davis Press, 1997).

Elliotte Rusty Harold, JavaBeans (Foster City, CA: IDG Books Worldwide, 1998).

Dan Brookshier, JavaBeans (Indianapolis, IN: New Riders Publishing, 1997).
Laurence Vanhelsuwe, Mastering JavaBeans (Alameda, CA: SYBEX Inc., 1997).

—70 -

	Composition Environment for Simulation Development
	ABSTRACT
	INTRODUCTION
	DESIGN ELEMENT GOALS
	Congruous Components
	Workspace and Palettes
	Repository
	Configuration Editors
	Run time

	BASIC IMPLEMENTATION
	Java
	JavaBeans
	Jars
	Icons
	Tags
	Repository

	IMPLEMENTATION OF VISUAL DESIGN ELEMENTS
	Main Menu
	Preferences Dialog
	Clipboard
	WorkSpace
	Navigating a Repository
	Palette

	EXAMPLES
	Construction of an Example Player
	Composition of a simple Simulation.

	RUN-TIME ADAPTERS
	FUTURE WORK
	Configuration Editors
	Editing Components
	Trainable Personality
	Repository Management
	Legacy Code
	Expanded Manifest Information

	CONCLUSIONS
	Recommendations

	APPENDICES
	A. GenericContainer.java listing.
	B. Personality.java listing.
	C. ComponentAtom.java listing.
	D. DAPPC2.java, DAPPC2Personality.java, and DAPPC2Impl.java listings.
	E. NIC2.java, NIC2Personality.java, and NIC2Impl.java listings.
	F. NIPlayerPersonality.java and NIPlayerPersImpl.java
	G. RunnablePersonality.java and RunTimeCommands.java
	H. RunTimeAdaptor.java

	REFERENCES

